We construct a degree theory for Vanishing Mean Oscillation functions in metric spaces, following some ideas of Brezis & Nirenberg. The underlying sets of our metric spaces are bounded open subsets of and their boundaries. Then, we apply our results in order to analyze the surjectivity properties of the -harmonic extensions of VMO vector-valued functions. The operators we are dealing with are second order linear differential operators sum of squares of vector fields satisfying the hypoellipticity condition of Hörmander.
@article{ASNSP_2002_5_1_3_569_0, author = {Uguzzoni, Francesco and Lanconelli, Ermanno}, title = {Degree theory for {VMO} maps on metric spaces}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {569--601}, publisher = {Scuola normale superiore}, volume = {Ser. 5, 1}, number = {3}, year = {2002}, mrnumber = {1990673}, zbl = {1109.35314}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2002_5_1_3_569_0/} }
TY - JOUR AU - Uguzzoni, Francesco AU - Lanconelli, Ermanno TI - Degree theory for VMO maps on metric spaces JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2002 SP - 569 EP - 601 VL - 1 IS - 3 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_2002_5_1_3_569_0/ LA - en ID - ASNSP_2002_5_1_3_569_0 ER -
%0 Journal Article %A Uguzzoni, Francesco %A Lanconelli, Ermanno %T Degree theory for VMO maps on metric spaces %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2002 %P 569-601 %V 1 %N 3 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_2002_5_1_3_569_0/ %G en %F ASNSP_2002_5_1_3_569_0
Uguzzoni, Francesco; Lanconelli, Ermanno. Degree theory for VMO maps on metric spaces. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 1 (2002) no. 3, pp. 569-601. http://archive.numdam.org/item/ASNSP_2002_5_1_3_569_0/
[1] Trace and trace lifting theorems in weight Sobolev spaces, preprint. | MR | Zbl
- - ,[2] The trace problem for vector fields satisfying Hörmander's condition, Math. Z. 231 (1999), 103-122. | MR | Zbl
- ,[3] Ginzburg-Landau vortices, In: “Progress in Nonlinear Differential Equations and their Applications” 13 Birkhäuser, Boston, 1994. | MR | Zbl
- - ,[4] Uniform Gaussian estimates of the fundamental solutions for heat operators on Carnot groups, to appear in Adv. Differential Equations. | MR | Zbl
- - ,[5] Families of diffeomorphic sub-Laplacians and free Carnot groups, preprint. | MR | Zbl
- ,[6] Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier Grenoble 19 (1969), 277-304. | Numdam | MR | Zbl
,[7] Large solutions for harmonic maps in two dimensions, Comm. Math. Phys. 92 (1983), 203-215. | MR | Zbl
- ,[8] Degree theory and BMO; Part I: compact manifolds without boundaries, Selecta Math. 1 (1995), 197-263. | MR | Zbl
- ,[9] Degree theory and BMO; Part II: compact manifolds with boundaries, Selecta Math. 2 (1996), 309-368. | MR | Zbl
- ,[10] Inequalities of John-Nirenberg type in doubling spaces, J. Anal. Math. 79 (1999), 215-240. | MR | Zbl
,[11] A version of a theorem of Dahlberg for the subelliptic Dirichlet problem, Math. Res. Lett. 5 (1998), 541-549. | MR | Zbl
- - ,[12] “Convex analysis and measurable multifunctions”, Lecture Notes in Math. 580, Springer-Verlag, New York, 1977. | MR | Zbl
- ,[13] On the geometry and dynamics of crystalline continua, Ann. Inst. H. Poincaré, Phys. Théor. 69 (1998), 335-358. | Numdam | MR | Zbl
,[14] Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math. 242, Springer-Verlag, Berlin-New York, 1971. | MR | Zbl
- ,[15] Trace inequalities for Carnot-Carathéodory spaces and applications, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 27 (1998), 195-252. | Numdam | MR | Zbl
- - ,[16] Sub-elliptic Besov spaces and the characterization of traces on lower dimensional manifolds, preprint. | MR | Zbl
- - ,[17] Non-doubling Ahlfors measures, perimeter measures, and the characterization of the trace spaces of Sobolev functions in Carnot-Carathéodory spaces, preprint. | MR | Zbl
- - ,[18] A degree theory for almost continuous functions, Fund. Math. 101 (1978), 39-52. | MR | Zbl
- ,[19] Un problème aux limites pour une classe d'opérateurs du second ordre hypoelliptiques, Ann. Inst. Fourier Grenoble 21 (1971), 99-148. | Numdam | MR | Zbl
,[20] Sur un théorème de traces, Ann. Inst. Fourier Grenoble 22 (1972), 73-83. | Numdam | MR | Zbl
,[21] Sobolev maps with integer degree and applications to Skyrme's problem, Proc. Roy. Soc. London Ser. A 436 (1992), 197-201. | MR | Zbl
- ,[22] Subelliptic eigenvalue problems, In: “Conference on harmonic analysis in honor of Antoni Zygmund”, Vol. I, II, Wadsworth, 1983, 590-606. | MR | Zbl
- ,[23] Trace theorems for anisotropic weighted Sobolev spaces in a corner, Math. Nachr. 127 (1986), 25-50. | MR | Zbl
,[24] Approximation and imbedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields, Boll. Un. Mat. Ital. 11-B (1997), 83-117. | MR | Zbl
- - ,[25] “Capacités, mouvement Brownien et problème de l'épine de Lebesgue sur les groupes de Lie nilpotents”, Lecture Notes in Math. 928, Springer, Berlin-New York, 1982, 96-120. | MR | Zbl
,[26] Isoperimetric and Sobolev inequalities for Carnot- Carathéodory spaces and the existence of minimal surfaces, Commun. Pure Appl. Math. 49 (1996), 1081-1144. | MR | Zbl
- ,[27] M. Giaquinta - G. Modica, - J. Soucek, Remarks on the degree theory, J. Funct. Anal. 125 (1994), 172-200. | MR | Zbl
[28] Degree formulas for maps with nonintegrable Jacobian, Topol. Methods Nonlinear Anal. 6 (1995), 81-95. | MR | Zbl
- - - ,[29] Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688. | MR | Zbl
- ,[30] The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J. 53 (1986), 503-523. | MR | Zbl
,[31] Subelliptic, second order differential operators, In: “Complex analysis III”, Lecture Notes in Math. 1277 Springer, Berlin, 1987, 46-77. | MR | Zbl
- ,[32] X-elliptic operators and X-control distances, Ricerche Mat. 49 (2000), 223-243. | MR | Zbl
- ,[33] On the Poincaré inequality for vector fields, Ark. Mat. 38 (2000), 327-342. | MR | Zbl
- ,[34] Trace theorems for vector fields, to appear in Math. Z. | MR | Zbl
- ,[35] Surface measures in Carnot-Carathéodory spaces, preprint. | Zbl
- ,[36] Fractional Sobolev norms and structure of Carnot-Carathéodory balls for Hörmander vector fields, Studia Math. 139 (2000), 213-244. | MR | Zbl
,[37] Alcuni aspetti variazionali dei mezzi discontinui, Boll. Un. Mat. Ital. (7) 7-A (1993), 149-198. | Zbl
,[38] Balls and metrics defined by vector fields I: basic properties, Acta Math. 155 (1985), 103-147. | MR | Zbl
- - ,[39] Wiener criterion for a class of degenerate elliptic operators, J. Differential Equations 66 (1987), 151-164. | MR | Zbl
- ,[40] “Topics in nonlinear functional analysis”, Courant Institute Lecture Notes, New York, 1974. | MR | Zbl
,[41] Fundamental solutions and geometry of the sum of squares of vector fields, Invent. Math. 78 (1984), 143-160. | MR | Zbl
,[42] On the Poisson kernel for the Kohn Laplacian, Rend. Mat. Appl. 17 (1997), 659-677. | MR | Zbl
- ,