Quasiconformal mappings with Sobolev boundary values
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 1 (2002) no. 3, p. 687-731

We consider quasiconformal mappings in the upper half space + n+1 of n+1 , n2, whose almost everywhere defined trace in n has distributional differential in L n ( n ). We give both geometric and analytic characterizations for this possibility, resembling the situation in the classical Hardy space H 1 . More generally, we consider certain positive functions defined on + n+1 , called conformal densities. These densities mimic the averaged derivatives of quasiconformal mappings, and we prove analogous trace theorems for them. The abstract approach of general conformal densities sheds new light to the mapping case as well.

Classification:  30C65,  46E35
@article{ASNSP_2002_5_1_3_687_0,
     author = {Astala, Kari and Bonk, Mario and Heinonen, Juha},
     title = {Quasiconformal mappings with Sobolev boundary values},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola normale superiore},
     volume = {Ser. 5, 1},
     number = {3},
     year = {2002},
     pages = {687-731},
     zbl = {pre02217019},
     mrnumber = {1990676},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2002_5_1_3_687_0}
}
Astala, Kari; Bonk, Mario; Heinonen, Juha. Quasiconformal mappings with Sobolev boundary values. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 1 (2002) no. 3, pp. 687-731. http://www.numdam.org/item/ASNSP_2002_5_1_3_687_0/

[Am] L. Ambrosio, Metric space valued functions of bounded variation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 3 (1990), 439-478. | Numdam | MR 1079985 | Zbl 0724.49027

[As] K. Astala, Quasiharmonic analysis and BMO, University of Joensuu, Publications in Sciences, 14 (1989), 9-19. | MR 1041109 | Zbl 0743.30032

[AG] K. Astala - F. W. Gehring, Quasiconformal analogues of theorems of Koebe and Hardy-Littlewood, Mich. Math. J. 32 (1985), 99-107. | MR 777305 | Zbl 0574.30027

[AK] K. Astala - P. Koskela, H p -theory for quasiconformal mappings, in preparation. | Zbl 1248.30006

[BL] Y. Benyamini - J. Lindenstrauss, “Geometric Nonlinear Functional Analysis”, Volume I, Vol. 48 of Colloquium Publications, American Mathematical Society, Providence, R.I., 2000. | MR 1727673 | Zbl 0946.46002

[BM] A. Baernstein Ii - J. J. Manfredi, Topics in quasiconformal mapping, In: “Topics in Modern Harmonic Analysis”, Proc. Seminar held in Torino and Milano II (1982), 819-862. | MR 748884 | Zbl 0567.30015

[BA] A. Beurling - L. V. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 124-142. | MR 86869 | Zbl 0072.29602

[BK] M. Bonk - P. Koskela, Conformal metrics and size of the boundary, Amer. J. Math., to appear. | MR 1939786 | Zbl 1018.30016

[BHK] M. Bonk - J. Heinonen - P. Koskela, Uniformizing Gromov hyperbolic spaces, Astérisque 270, 2001. | MR 1829896 | Zbl 0970.30010

[BHR] M. Bonk - J. Heinonen - S. Rohde, Doubling conformal densities, J. reine angew. Math. 541 (2001), 117-141. | MR 1876287 | Zbl 0987.30009

[BKR] M. Bonk - P. Koskela - S. Rohde, Conformal metrics on the unit ball in Euclidean space, Proc. London Math. Soc. 77 (1998), 635-664. | MR 1643421 | Zbl 0916.30017

[CST] A. Connes - D. Sullivan - N. Teleman, Quasiconformal mappings, operators on Hilbert space, and local formulae for characteristic classes, Topology 33 (1994), 663-681. | MR 1293305 | Zbl 0840.57013

[DU] J. Diestel - J. J. Uhl, “Vector Measures”, American Mathematical Society, Providence, R.I., 1977. | MR 453964 | Zbl 0369.46039

[D] J. L. Doob, “Classical Potential Theory and its Probabilistic Counterpart”, Springer-Verlag, New York, 1984. | MR 731258 | Zbl 0549.31001

[Fe] H. Federer, “Geometric Measure Theory”, Springer-Verlag, Berlin-Heidelberg-New York, 1969. | MR 257325 | Zbl 0176.00801

[Fu] B. Fuglede, Extremal length and functional completion, Acta Math. 98 (1957), 171-218. | MR 97720 | Zbl 0079.27703

[Ga] J. Garnett, “Bounded Analytic Functions”, Academic Press, New York, 1981. | MR 628971 | Zbl 0469.30024

[G1] F. W. Gehring, The Hausdorff measure of sets which link in euclidean space, Contributions to analysis: A collection of papers dedicated to Lipman Bers, Academic Press, New York, 1974. | MR 361008 | Zbl 0295.28031

[G2] F. W. Gehring, Lower dimensional absolute continuity properties of quasiconformal mappings, Math. Proc. Cambridge Philos. Soc. 78 (1975), 81-93. | MR 382638 | Zbl 0307.30026

[G3] F. W. Gehring, Absolute continuity properties of quasiconformal mappings, Symposia Math. XVIII (1976), 551-559. | MR 466540 | Zbl 0342.30013

[GH] F. W. Gehring - W. K. Hayman, An inequality in the theory of conformal mapping, J. Math. Pure Appl. 41 (1962), 353-361. | MR 148884 | Zbl 0105.28002

[GO] F. W. Gehring - B. G. Osgood, Uniform domains and the quasihyperbolic metric, J. Anal. Math. 36 (1979), 50-74. | MR 581801 | Zbl 0449.30012

[GT] D. Gilbarg - N. S. Trudinger, “Elliptic Partial Differential Operators of Second Order”, 2nd Edition, Springer-Verlag, Berlin-Heidelberg-New York, 1983. | MR 737190 | Zbl 0361.35003

[HaK] P. Hajłasz - P. Koskela, Sobolev met Poincaré, Memoirs Amer. Math. Soc. 145, 2000. | MR 1683160 | Zbl 0954.46022

[Ha] B. Hanson, Quasiconformal analogues of a theorem of Smirnov, Math. Scand. 75 (1994), 133-149. | MR 1308944 | Zbl 0844.30013

[H1] J. Heinonen, The boundary absolute continuity of quasiconformal mappings, Amer. J. Math. 116 (1994), 1545-1567. | MR 1305877 | Zbl 0822.30022

[H2] J. Heinonen, The boundary absolute continuity of quasiconformal mappings II, Rev. Mat. Iberoamericana 12 (1996), 697-725. | MR 1435481 | Zbl 0872.30012

[H3] J. Heinonen, A theorem of Semmes and the boundary absolute continuity in all dimensions, Rev. Mat. Iberoamericana 12 (1996), 783-789. | MR 1435483 | Zbl 0881.30021

[HKM] J. Heinonen - T. Kilpeläinen - O. Martio, “Nonlinear Potential Theory of Degenerate Elliptic Equations”, Oxford University Press, 1993. | MR 1207810 | Zbl 0780.31001

[HeK] J. Heinonen - P. Koskela, The boundary distortion of a quasiconformal mapping, Pacific J. Math. 165 (1994), 93-114. | MR 1285566 | Zbl 0813.30017

[HKST] J. Heinonen - P. Koskela - N. Shanmugalingam - J.T. Tyson, Sobolev classes of Banach space-valued functions and quasiconformal mappings, J. Anal. Math. 85 (2001), 87-139. | MR 1869604 | Zbl 1013.46023

[HS] J. Heinonen - S. Semmes, Thirty-three YES or NO questions about mappings, measures, and metrics, Conformal Geom. Dyn. 1 (1997), 1-12. | MR 1452413 | Zbl 0885.00006

[JW] D. Jerison - A. Weitsman, On the means of quasiregular and quasiconformal mappings, Proc. Amer. Math. Soc. 83 (1981), 304-306. | MR 624919 | Zbl 0471.30008

[J] P. W. Jones, Extension theorems for BMO, Indiana Univ. Math. J. 29 (1980), 41-66. | MR 554817 | Zbl 0432.42017

[K] W. Kaplan, On Gross's star theorem, schlicht functions, logarithmic potentials, and Fourier series, Ann. Acad. Sci. Fenn. Ser. A I Math.-Phys. 86 (1951), 1-23. | MR 43901 | Zbl 0042.31401

[KSh] S. Kallunki - N. Shanmugalingam, Modulus and continuous capacity, Ann. Acad. Sci. Fenn. Ser. A I Math. 26 (2001), 455-464. | MR 1833251 | Zbl 1002.31004

[KS] N. J. Korevaar - R. M. Schoen, Sobolev spaces and harmonic maps for metric space targets, Comm. Anal. Geom. 1 (1993), 561-659. | MR 1266480 | Zbl 0862.58004

[KM] P. Koskela - P. Macmanus, Quasiconformal mappings and Sobolev spaces, Studia Math. 131 (1998), 1-17. | MR 1628655 | Zbl 0918.30011

[KR] P. Koskela - S. Rohde, Hausdorff dimension and mean porosity, Math. Ann. 309 (1997), 593-609. | MR 1483825 | Zbl 0890.30013

[Ma] N. G. Makarov, Probability methods in the theory of conformal mappings, (in Russian) Algebra and Analysis 1 (1989), 1-59. | MR 1015333 | Zbl 0736.30006

[Mz] V. G. Maz'Ja, “Sobolev Spaces”, Springer-Verlag, Berlin, 1985. | MR 817985

[MZ] J. Malý - W. P. Ziemer, Fine regularity of solutions of elliptic partial differential equations, AMS Mathematical Surveys and Monographs, 51, Providence, R.I., 1997. | MR 1461542 | Zbl 0882.35001

[Po] Ch. Pommerenke, “Boundary Behaviour of Conformal Maps”, Springer-Verlag, Berlin-Heidelberg-New York, 1992. | MR 1217706 | Zbl 0762.30001

[Pr] I. I. Priwalow, “Randeigenschaften analytischer Funktionen”, Deutscher Verlag Wiss., Berlin, 1956. | MR 83565 | Zbl 0073.06501

[Re] Yu. G. Reshetnyak, Sobolev classes of functions with values in a metric space, Sibirsk. Mat. Zh. 38 (1997), 657-675. | MR 1457485 | Zbl 0944.46024

[Ri] F. Riesz - M. Riesz, Über die Randwerte einer analytischen Funktion, 4. Cong. Scand. Math., Stockholm (1916), 27-44. | JFM 47.0295.03

[RS1] R. Rochberg - S. Semmes, End point results for estimates of singular values of singular integral operators, Contributions to operator theory and its applications (Mosa, AZ, 1987), pp. 217-231, in Oper. Theory Adv. Appl. 35, Birkhäuser, Basel, 1988. | MR 1017671 | Zbl 0681.47014

[RS2] R. Rochberg - S. Semmes, Nearly weakly orthonormal sequences, singular value estimates, and Calderón-Zygmund operators, J. Funct. Anal. 86 (1989), 237-306. | MR 1021138 | Zbl 0699.47012

[Se] S. Semmes, Quasisymmetry, measure, and a question of Heinonen, Rev. Mat. Iberoamericana 12 (1996), 727-781. | MR 1435482 | Zbl 0881.30020

[Sh] N. Shanmugalingam, Newtonian spaces: An extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana 16 (2000), 243-279. | MR 1809341 | Zbl 0974.46038

[St] E. Stein, “Singular Integrals and Differentiability Properties of Functions”, Princeton Univ. Press, Princeton, N.J., 1970. | MR 290095 | Zbl 0207.13501

[SW] E. Stein - G. Weiss, “Introduction to Fourier Analysis on Euclidean Spaces”, Princeton Univ. Press, Princeton, N.J., 1971. | MR 304972 | Zbl 0232.42007

[Su] D. Sullivan, Hyperbolic geometry and homeomorphisms, In: “Geometric Topology” (Proc. Georgia Topology Conf. Athens, Ga, 1977), pp. 543-555, Academic Press, New York, 1979. | MR 537749 | Zbl 0478.57007

[TV] P. Tukia J. Väisälä, Lipschitz and quasiconformal approximation and extension, Ann. Acad. Sci. Fenn. Ser. A I Math. 6 (1981), 303-342. | MR 658932 | Zbl 0448.30021

[V1] J. Väisälä, “Lectures on n-dimensional Quasiconformal Mappings”, Lecture Notes in Math. 229, Springer-Verlag, Berlin, 1971. | MR 454009 | Zbl 0221.30031

[V2] J. Väisälä, Quasi-symmetric embeddings in Euclidean spaces, Trans. Amer. Math. Soc. 264 (1981), 191-204. | MR 597876 | Zbl 0456.30018

[V3] J. Väisälä, The wall conjecture on domains in Euclidean spaces, Manuscripta Math. 93 (1997), 515-534. | MR 1465895 | Zbl 0878.30013

[Vu] M. Vuorinen, “Conformal Geometry and Quasiregular Mappings”, Lecture Notes in Math. 1319, Springer-Verlag, Berlin, 1988. | MR 950174 | Zbl 0646.30025

[W] P. Wojtaszczyk, “Banach Spaces for Analysts”, Cambridge Studies in adv. math. 25, Cambridge University Press, 1991. | MR 1144277 | Zbl 0724.46012

[Y] K. Yosida, “Functional Analysis”, Springer-Verlag, Berlin-Heidelberg-New York, 1965. | Zbl 0126.11504

[Zie] W. P. Ziemer, Extremal length and p-capacity, Mich. Math. J. 16 (1969), 43-51. | MR 247077 | Zbl 0172.38701

[Zin] M. Zinsmeister, A distortion theorem for quasiconformal mappings, Bull. Soc. Math. France 114 (1986), 123-133. | Numdam | MR 860655 | Zbl 0602.30027

[Zo] V. A. Zorich, Angular boundary values of quasiconformal mappings of a ball, Dokl. Akad. Nauk. SSSR 179 (1967), 1492-1494. | MR 222291 | Zbl 0176.37902