The Leitmotiv of this work is to find suitable notions of dual varieties in a general sense. We develop the basic elements of a duality theory for varieties and complex spaces, by adopting a geometric and a categorical point of view. One main feature is to prove a biduality property for each notion which is achieved in most cases.
@article{ASNSP_2002_5_1_4_769_0, author = {Kosarew, Siegmund}, title = {Geometric and categorical nonabelian duality in complex geometry}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {769--797}, publisher = {Scuola normale superiore}, volume = {Ser. 5, 1}, number = {4}, year = {2002}, mrnumber = {1991002}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2002_5_1_4_769_0/} }
TY - JOUR AU - Kosarew, Siegmund TI - Geometric and categorical nonabelian duality in complex geometry JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2002 SP - 769 EP - 797 VL - 1 IS - 4 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_2002_5_1_4_769_0/ LA - en ID - ASNSP_2002_5_1_4_769_0 ER -
%0 Journal Article %A Kosarew, Siegmund %T Geometric and categorical nonabelian duality in complex geometry %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2002 %P 769-797 %V 1 %N 4 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_2002_5_1_4_769_0/ %G en %F ASNSP_2002_5_1_4_769_0
Kosarew, Siegmund. Geometric and categorical nonabelian duality in complex geometry. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 1 (2002) no. 4, pp. 769-797. http://archive.numdam.org/item/ASNSP_2002_5_1_4_769_0/
[1] “Stable homotopy and generalized homology”, The University of Chicago Press, Chicago, 1974. | MR | Zbl
,[2] Compactifying the Picard Scheme, Adv. Math. 35 (1980), 50-112. | MR | Zbl
- ,[3] Stability of the Poincaré bundle, Math. Nachr. 188 (1997), 5-15. | MR | Zbl
- - ,[4] A. Bondal - D. Orlov., Reconstruction of a variety from the derived category and groups of autoequivalences, Compositio Math. 125 (2001), 327-344. | MR | Zbl
[5] Semiorthogonal decomposition for algebraic varieties, MPI Bonn, Preprint 95-15.
- ,[6] Equivalences of triangulated categories and Fourier-Mukai transforms, Bull. London Math. Soc. 31 (1999), 25-34. | MR | Zbl
,[7] Derived Quot schemes, Ann. Sci. Ecole Norm. Sup. (4) 34 (2001), 403-440. | Numdam | MR | Zbl
- ,[8] Derived Hilbert schemes, J. Amer. Math. Soc. 15 (2002), 787-815. | MR | Zbl
- ,[9] Duality, trace and transfer, In: “Proc. Steklov Inst.” (4); Topology, A collection of papers, P. S. Alexandrov (ed.) (AMS translation), 1984, pp. 85-103. | MR | Zbl
- ,[10] “Elements of the theory of representations”, Grundl. math. Wiss. 220, Springer-Verlag, Berlin-Heidelberg-New York, 1976. | MR | Zbl
,[11] Nonabelian duality on Stein spaces, Amer. J. Math. 120 (1998), 637-648. | MR | Zbl
,[12] Global Moduli Spaces and Simple Holomorphic bundles, Publ. RIMS, Kyoto Univ. 25 (1989), 1-19. | MR | Zbl
- ,[13] Generalized Fourier-Mukai transforms, J. Reine Angew. Math. 480 (1996), 197-211. | MR | Zbl
,[14] “Categories for the Working Mathematician”, Grad. Texts in Math. 5, Springer-Verlag, Berlin-Heidelberg-New York, 1971. | MR | Zbl
,[15] On the moduli space of bundles on a K3-surface, In: “Vector Bundles on Algebraic Varieties” Bombay Coll.,1984, Tata Inst., Oxford University Press, 1987, pp. 341-413. | MR | Zbl
,[16] Deformations of the moduli spaces of vector bundles over an algebraic curve, Ann. Math. 101 (1975), 391-417. | MR | Zbl
- ,[17] “Noncommutative Algebraic Geometry and Representations of Quantized Algebras”, Kluwer Acad. Publ., Dordrecht-London-Boston, 1995. | MR | Zbl
,[18] “Fibrés vectoriels sur les courbes algébriques”, Astérisque 96 (1982). | Numdam | Zbl
,[19] Moduli of representations of the fundamental group of a smooth projective variety I, Publ. Math. IHES 79 (1994), 47-129. | Numdam | MR | Zbl
,[20] A closed model structure for -categories, internal , -stacks and generalized Seifert-Van Kampen, Preprint math. AG 9704006.
,[21] Algebraic aspects of higher nonabelian Hodge theory, Preprint math. AG 9902067. | MR | Zbl
,[22] Dualité de Tannaka supérieure I: Structures monoidales, MPI Bonn, Preprint June 10, 2000.
,[23] “Elements of homotopy theory”, Grad. Texts in Math. 61, Springer-Verlag, Berlin-Heidelberg-New York, 1978. | MR | Zbl
,