We prove that for a parabolic subgroup of the fixed points sets of all elements in are the same. This result, together with a deep study of the structure of subgroups of acting freely and properly discontinuously on , entails a generalization of the so called weak Hurwitzâs theorem: namely that, given a complex manifold covered by and such that the group of deck transformations of the covering is âsufficiently genericâ, then is isolated in .
@article{ASNSP_2002_5_1_4_851_0, author = {de Fabritiis, Chiara}, title = {Generic subgroups of {Aut} $\mathbb {B}^n$}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {851--868}, publisher = {Scuola normale superiore}, volume = {Ser. 5, 1}, number = {4}, year = {2002}, mrnumber = {1991005}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2002_5_1_4_851_0/} }
TY - JOUR AU - de Fabritiis, Chiara TI - Generic subgroups of Aut $\mathbb {B}^n$ JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2002 SP - 851 EP - 868 VL - 1 IS - 4 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_2002_5_1_4_851_0/ LA - en ID - ASNSP_2002_5_1_4_851_0 ER -
%0 Journal Article %A de Fabritiis, Chiara %T Generic subgroups of Aut $\mathbb {B}^n$ %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2002 %P 851-868 %V 1 %N 4 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_2002_5_1_4_851_0/ %G en %F ASNSP_2002_5_1_4_851_0
de Fabritiis, Chiara. Generic subgroups of Aut $\mathbb {B}^n$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 1 (2002) no. 4, pp. 851-868. http://archive.numdam.org/item/ASNSP_2002_5_1_4_851_0/
[1] M. Abate:, âIteration theory of holomorphic maps on taut manifoldsâ, Mediterranean Press, Rende, Cosenza 1989. | MR | Zbl
[2] Common fixed points in hyperbolic Riemann surfaces and convex domains, Proc. Amer. Math. Soc. 112 (1991), 503-512. | MR | Zbl
- ,[3] Common fixed points of commuting holomorphic maps in the unit ball of , Proc. Amer. Math. Soc. 127, 4, (1999), 1133-1141. | MR | Zbl
,[4] Commuting holomorphic functions and hyperbolic automorphisms, Proc. Amer. Math. Soc. 124 (1996), 3027-3037. | MR | Zbl
,[5] On holomorphic maps which commute with hyperbolic automorphisms, Adv. Math. 144 (1999), 119-136. | MR | Zbl
- ,[6] Quotients of the unit ball of by a free action of , Jour. d'Anal. Math. 85 (2001), 213-224. | MR | Zbl
- ,[7] âRiemann Surfacesâ, Springer, Berlin, 1980. | MR | Zbl
- ,[8] âHolomorphic maps and invariant distancesâ, North-Holland, Amsterdam, 1980. | MR | Zbl
- ,[9] A generalization of the Aumann-Carathéodory Starrheitssatz, Duke Math. J. 8 (1941), 312-316. | JFM | MR
,[10] Ăber algebraische Gebilde mit eindeutingen Transformationen in sich, Math. Ann. 41 (1893), 403-442. | JFM | MR
,[11] âAutomorphic forms and Kleinian groupsâ, Beinjamin, New York, 1972. | MR | Zbl
,[12] Iterates of holomorphic self-maps of the unit ball of , Mich. Math. J. 30 (1983), 97-106. | MR | Zbl
,[13] âFunction theory in the Unit Ball of â, Springer, Berlin 1980. | MR | Zbl
,