A new proof of the rectifiable slices theorem
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 1 (2002) no. 4, p. 905-924

This paper gives a new proof of the fact that a k-dimensional normal current T in m is integer multiplicity rectifiable if and only if for every projection P onto a k-dimensional subspace, almost every slice of T by P is 0-dimensional integer multiplicity rectifiable, in other words, a sum of Dirac masses with integer weights. This is a special case of the Rectifiable Slices Theorem, which was first proved a few years ago by B. White.

Classification:  49Q15
@article{ASNSP_2002_5_1_4_905_0,
     author = {Jerrard, Robert L.},
     title = {A new proof of the rectifiable slices theorem},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola normale superiore},
     volume = {Ser. 5, 1},
     number = {4},
     year = {2002},
     pages = {905-924},
     zbl = {1096.49022},
     mrnumber = {1991007},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2002_5_1_4_905_0}
}
Jerrard, Robert L. A new proof of the rectifiable slices theorem. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 1 (2002) no. 4, pp. 905-924. http://www.numdam.org/item/ASNSP_2002_5_1_4_905_0/

[1] L. Ambrosio, Metric space valued functions of bounded variation, Ann. Scuola. Norm. Sup. Pisa Cl. Sci (4) 17 (1990), 439-478. | Numdam | MR 1079985 | Zbl 0724.49027

[2] L. Ambrosio - B. Kirchheim, Currents in metric spaces, Acta Math. 185 (2000), 1-80. | MR 1794185 | Zbl 0984.49025

[3] J. Bliedtner - P. Loeb, A reduction technique for limit theorems in analysis and probability theory, Ark. Math. 30 (1992), 25-43. | MR 1171093 | Zbl 0757.28006

[4] L. C. Evans - R. F. Gariepy, “Measure theory and fine properties of functions”, CRC Press, Boca Raton, Florida, 1992. | MR 1158660 | Zbl 0804.28001

[5] H. Federer, “Geometric measure theory”, Springer-Verlag, Berlin-Heidelberg-New York, 1969. | MR 257325 | Zbl 0176.00801

[6] M. Giaquinta - G. Modica - J. Souček, “Cartesian currents in the calculus of variations. I. Cartesian currents”, Springer-Verlag, 1998. | MR 1645086 | Zbl 0914.49001

[7] M. Giaquinta - G. Modica - J. Souček, “Cartesian currents in the calculus of variations. II. Variational integrals”, Springer-Verlag, 1998. | MR 1645082 | Zbl 0914.49002

[8] E. Giusti, “Minimal surfaces and functions of bounded variation”, Birkhäuser, 1984. | MR 775682 | Zbl 0545.49018

[9] R. L. Jerrard - H. M. Soner, Rectifiability of the distributional Jacobian for a class of functions, C.R. Acad. Sci. Paris, Série I, 329 (1999), 683-688. | MR 1724082 | Zbl 0946.49033

[10] R. L. Jerrard - H. M. Soner, Functions of bounded higher variation, Indiana Univ. Math. J., 51 (2002), 645-677. | MR 1911049 | Zbl 1057.49036

[11] L. Simon, “Lectures on geometric measure theory”, Australian National University, 1984. | MR 756417 | Zbl 0546.49019

[12] M. Sychev, A new approach to Young measure theory, relaxation and convergence in energy, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 16 (1999), 773-812. | Numdam | MR 1720517 | Zbl 0943.49012

[13] B. White, Rectifiability of flat chains, Ann. of Math. (2), 150 (1999), 165-184. | MR 1715323 | Zbl 0965.49024