This paper gives a new proof of the fact that a -dimensional normal current in is integer multiplicity rectifiable if and only if for every projection onto a -dimensional subspace, almost every slice of by is -dimensional integer multiplicity rectifiable, in other words, a sum of Dirac masses with integer weights. This is a special case of the Rectifiable Slices Theorem, which was first proved a few years ago by B. White.
@article{ASNSP_2002_5_1_4_905_0, author = {Jerrard, Robert L.}, title = {A new proof of the rectifiable slices theorem}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {905--924}, publisher = {Scuola normale superiore}, volume = {Ser. 5, 1}, number = {4}, year = {2002}, mrnumber = {1991007}, zbl = {1096.49022}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2002_5_1_4_905_0/} }
TY - JOUR AU - Jerrard, Robert L. TI - A new proof of the rectifiable slices theorem JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2002 SP - 905 EP - 924 VL - 1 IS - 4 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_2002_5_1_4_905_0/ LA - en ID - ASNSP_2002_5_1_4_905_0 ER -
%0 Journal Article %A Jerrard, Robert L. %T A new proof of the rectifiable slices theorem %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2002 %P 905-924 %V 1 %N 4 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_2002_5_1_4_905_0/ %G en %F ASNSP_2002_5_1_4_905_0
Jerrard, Robert L. A new proof of the rectifiable slices theorem. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 1 (2002) no. 4, pp. 905-924. http://archive.numdam.org/item/ASNSP_2002_5_1_4_905_0/
[1] Metric space valued functions of bounded variation, Ann. Scuola. Norm. Sup. Pisa Cl. Sci (4) 17 (1990), 439-478. | Numdam | MR | Zbl
,[2] Currents in metric spaces, Acta Math. 185 (2000), 1-80. | MR | Zbl
- ,[3] A reduction technique for limit theorems in analysis and probability theory, Ark. Math. 30 (1992), 25-43. | MR | Zbl
- ,[4] “Measure theory and fine properties of functions”, CRC Press, Boca Raton, Florida, 1992. | MR | Zbl
- ,[5] “Geometric measure theory”, Springer-Verlag, Berlin-Heidelberg-New York, 1969. | MR | Zbl
,[6] “Cartesian currents in the calculus of variations. I. Cartesian currents”, Springer-Verlag, 1998. | MR | Zbl
- - ,[7] “Cartesian currents in the calculus of variations. II. Variational integrals”, Springer-Verlag, 1998. | MR | Zbl
- - ,[8] “Minimal surfaces and functions of bounded variation”, Birkhäuser, 1984. | MR | Zbl
,[9] Rectifiability of the distributional Jacobian for a class of functions, C.R. Acad. Sci. Paris, Série I, 329 (1999), 683-688. | MR | Zbl
- ,[10] Functions of bounded higher variation, Indiana Univ. Math. J., 51 (2002), 645-677. | MR | Zbl
- ,[11] “Lectures on geometric measure theory”, Australian National University, 1984. | MR | Zbl
,[12] A new approach to Young measure theory, relaxation and convergence in energy, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 16 (1999), 773-812. | Numdam | MR | Zbl
,[13] Rectifiability of flat chains, Ann. of Math. (2), 150 (1999), 165-184. | MR | Zbl
,