A new proof of the rectifiable slices theorem
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 1 (2002) no. 4, pp. 905-924.

This paper gives a new proof of the fact that a k-dimensional normal current T in m is integer multiplicity rectifiable if and only if for every projection P onto a k-dimensional subspace, almost every slice of T by P is 0-dimensional integer multiplicity rectifiable, in other words, a sum of Dirac masses with integer weights. This is a special case of the Rectifiable Slices Theorem, which was first proved a few years ago by B. White.

Classification: 49Q15
@article{ASNSP_2002_5_1_4_905_0,
     author = {Jerrard, Robert L.},
     title = {A new proof of the rectifiable slices theorem},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {905--924},
     publisher = {Scuola normale superiore},
     volume = {Ser. 5, 1},
     number = {4},
     year = {2002},
     mrnumber = {1991007},
     zbl = {1096.49022},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_2002_5_1_4_905_0/}
}
TY  - JOUR
AU  - Jerrard, Robert L.
TI  - A new proof of the rectifiable slices theorem
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2002
SP  - 905
EP  - 924
VL  - 1
IS  - 4
PB  - Scuola normale superiore
UR  - http://archive.numdam.org/item/ASNSP_2002_5_1_4_905_0/
LA  - en
ID  - ASNSP_2002_5_1_4_905_0
ER  - 
%0 Journal Article
%A Jerrard, Robert L.
%T A new proof of the rectifiable slices theorem
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2002
%P 905-924
%V 1
%N 4
%I Scuola normale superiore
%U http://archive.numdam.org/item/ASNSP_2002_5_1_4_905_0/
%G en
%F ASNSP_2002_5_1_4_905_0
Jerrard, Robert L. A new proof of the rectifiable slices theorem. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 1 (2002) no. 4, pp. 905-924. http://archive.numdam.org/item/ASNSP_2002_5_1_4_905_0/

[1] L. Ambrosio, Metric space valued functions of bounded variation, Ann. Scuola. Norm. Sup. Pisa Cl. Sci (4) 17 (1990), 439-478. | Numdam | MR | Zbl

[2] L. Ambrosio - B. Kirchheim, Currents in metric spaces, Acta Math. 185 (2000), 1-80. | MR | Zbl

[3] J. Bliedtner - P. Loeb, A reduction technique for limit theorems in analysis and probability theory, Ark. Math. 30 (1992), 25-43. | MR | Zbl

[4] L. C. Evans - R. F. Gariepy, “Measure theory and fine properties of functions”, CRC Press, Boca Raton, Florida, 1992. | MR | Zbl

[5] H. Federer, “Geometric measure theory”, Springer-Verlag, Berlin-Heidelberg-New York, 1969. | MR | Zbl

[6] M. Giaquinta - G. Modica - J. Souček, “Cartesian currents in the calculus of variations. I. Cartesian currents”, Springer-Verlag, 1998. | MR | Zbl

[7] M. Giaquinta - G. Modica - J. Souček, “Cartesian currents in the calculus of variations. II. Variational integrals”, Springer-Verlag, 1998. | MR | Zbl

[8] E. Giusti, “Minimal surfaces and functions of bounded variation”, Birkhäuser, 1984. | MR | Zbl

[9] R. L. Jerrard - H. M. Soner, Rectifiability of the distributional Jacobian for a class of functions, C.R. Acad. Sci. Paris, Série I, 329 (1999), 683-688. | MR | Zbl

[10] R. L. Jerrard - H. M. Soner, Functions of bounded higher variation, Indiana Univ. Math. J., 51 (2002), 645-677. | MR | Zbl

[11] L. Simon, “Lectures on geometric measure theory”, Australian National University, 1984. | MR | Zbl

[12] M. Sychev, A new approach to Young measure theory, relaxation and convergence in energy, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 16 (1999), 773-812. | Numdam | MR | Zbl

[13] B. White, Rectifiability of flat chains, Ann. of Math. (2), 150 (1999), 165-184. | MR | Zbl