Families of differential forms on complex spaces
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 2 (2003) no. 1, pp. 119-150.

On every reduced complex space X we construct a family of complexes of soft sheaves Λ X ; each of them is a resolution of the constant sheaf X and induces the ordinary De Rham complex of differential forms on a dense open analytic subset of X. The construction is functorial (in a suitable sense). Moreover each of the above complexes can fully describe the mixed Hodge structure of Deligne on a compact algebraic variety.

Classification: 32C15, 32S35
@article{ASNSP_2003_5_2_1_119_0,
     author = {Ancona, Vincenzo and Gaveau, Bernard},
     title = {Families of differential forms on complex spaces},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {119--150},
     publisher = {Scuola normale superiore},
     volume = {Ser. 5, 2},
     number = {1},
     year = {2003},
     mrnumber = {1990976},
     zbl = {1170.35358},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_2003_5_2_1_119_0/}
}
TY  - JOUR
AU  - Ancona, Vincenzo
AU  - Gaveau, Bernard
TI  - Families of differential forms on complex spaces
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2003
SP  - 119
EP  - 150
VL  - 2
IS  - 1
PB  - Scuola normale superiore
UR  - http://archive.numdam.org/item/ASNSP_2003_5_2_1_119_0/
LA  - en
ID  - ASNSP_2003_5_2_1_119_0
ER  - 
%0 Journal Article
%A Ancona, Vincenzo
%A Gaveau, Bernard
%T Families of differential forms on complex spaces
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2003
%P 119-150
%V 2
%N 1
%I Scuola normale superiore
%U http://archive.numdam.org/item/ASNSP_2003_5_2_1_119_0/
%G en
%F ASNSP_2003_5_2_1_119_0
Ancona, Vincenzo; Gaveau, Bernard. Families of differential forms on complex spaces. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 2 (2003) no. 1, pp. 119-150. http://archive.numdam.org/item/ASNSP_2003_5_2_1_119_0/

[A] D. Arapura, “Building mixed Hodge structures, The arithmetic and geometry of algebraic cycles”, CRM Proc. Lecture Notes 24, Amer. Math. Soc., Providence, RI, 2000. | MR | Zbl

[AG1] V. Ancona - B. Gaveau, Le complexe de De Rham d'un espace analytique normal, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), 577-581. | MR | Zbl

[AG2] V. Ancona - B. Gaveau, Intégrales de formes différentielles et théorèmes de De Rham sur un espace analytique, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 65-70. | MR | Zbl

[AG3] V. Ancona - B. Gaveau, Théorèmes de De Rham sur un espace analytique, Rev. Roumaine de Math. Pures appl. 38 (1993), 579-594. | MR | Zbl

[AG4] V. Ancona - B. Gaveau, The De Rham complex of a reduced complex space, In: “Contribution to complex analysis and analytic geometry”, H. Skoda and J. M. Trépreau (eds.), Vieweg, 1994. | MR | Zbl

[AG5] V. Ancona - B. Gaveau, Théorie de Hodge et complexe de De Rham holomorphe pour certains espaces analytiques, Bull. Sci. Math. 122 (1998), 163-201. | MR | Zbl

[AG6] V. Ancona - B. Gaveau, Suites spectrales, formes holomorphes et théorie de Hodge de certains espaces analytiques, “Proceedings of Coimbra conference on Partial differential equations and Mathematical Physics” J. Vaillant and J. Carvalho e Silva (eds.), Textos Mat. Ser. B, 24 (2000), 1-14. | Zbl

[AG7] V. Ancona - B. Gaveau, Differential forms, integration and Hodge theory on complex analytic spaces, Preprint 2001.

[BH] T. Bloom - M. Herrera, De Rham cohomology of an analytic space, Invent. Math. 7 (1969), 275-296. | EuDML | MR | Zbl

[C] J. Carlson, Polyhedral resolutions of algebraic varieties, Trans. Amer. Math. Soc. 292 (1985), 595-612. | MR | Zbl

[D] P. Deligne, Théorie de Hodge II et III, Publ. Math. IHES 40 (1971), 5-58 et 44 (1974), 5-77. | Numdam | MR | Zbl

[E] F. Elzein, Mixed Hodge structures, Trans. Amer. Math. Soc. 275 (1983), 71-106. | MR | Zbl

[GK] H. Grauert - H. Kerner, Deformationen von Singularitäten komplexer Räume, Math. Ann. 153 (1964), 236-260. | MR | Zbl

[GNPP1] F. Guillèn - V. Navarro Aznar - P. Pascual Gainza - P. Puertas, “Théorie de Hodge via schémas cubiques, Notes polycopiées”, Univ. Politecnica de Catalunya, 1982.

[GNPP2] F. Guillèn - V. Navarro Aznar - P. Pascual Gainza - P. Puertas, Hyperrésolutions cubiques et descente cohomologique, Lecture notes in Math. 1335, Springer, 1988. | Zbl

[GS] P. Griffiths - W. Schmid, Recent developments in Hodge theory: a discussion of techniques and results, “Proceedings of the International Colloquium on Discrete subgroups of Lie groups”, (Bombay, 1973), Oxford University Press, 1975. | MR | Zbl

[L] J. Leray, Problème de Cauchy III, Bull. Soc. Math. France 87 (1959), 81-180. | Numdam | MR | Zbl

[R] H. J. Reiffen, Das Lemma von Poincaré für holomorphe Differentialformen auf komplexen Räumen, Math. Z. 101 (1964), 269-284. | MR | Zbl

[S] D. Sullivan, Infinitesimal computations in topology, Publ. Math. IHES 47 (1977), 269-331. | Numdam | MR | Zbl