We consider the following singularly perturbed elliptic problem
@article{ASNSP_2003_5_2_1_199_0, author = {Berestycki, Henri and Wei, Juncheng}, title = {On singular perturbation problems with {Robin} boundary condition}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {199--230}, publisher = {Scuola normale superiore}, volume = {Ser. 5, 2}, number = {1}, year = {2003}, mrnumber = {1990979}, zbl = {1121.35008}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2003_5_2_1_199_0/} }
TY - JOUR AU - Berestycki, Henri AU - Wei, Juncheng TI - On singular perturbation problems with Robin boundary condition JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2003 SP - 199 EP - 230 VL - 2 IS - 1 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_2003_5_2_1_199_0/ LA - en ID - ASNSP_2003_5_2_1_199_0 ER -
%0 Journal Article %A Berestycki, Henri %A Wei, Juncheng %T On singular perturbation problems with Robin boundary condition %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2003 %P 199-230 %V 2 %N 1 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_2003_5_2_1_199_0/ %G en %F ASNSP_2003_5_2_1_199_0
Berestycki, Henri; Wei, Juncheng. On singular perturbation problems with Robin boundary condition. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 2 (2003) no. 1, pp. 199-230. http://archive.numdam.org/item/ASNSP_2003_5_2_1_199_0/
[1] Equilibria with many nuclei for the Cahn-Hilliard equation, J. Diff. Eqns. 160 (2000), 283-356. | MR | Zbl
- ,[2] Multi-spike stationary solutions of the Cahn-Hilliard equation in higher-dimension and instability, Adv. Diff. Eqns. 4 (1999), 1-69. | MR | Zbl
- - ,[3] Uniqueness of the ground state solution of in , Comm. PDE. 16 (1991), 1549-1572. | MR | Zbl
- ,[4] Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting, Indiana Univ. Math. J. 48 (1999), 883-898. | MR | Zbl
- ,[5] On the role of mean curvature in some singularly perturbed Neumann problems, SIAM J. Math. Anal. 31 (1999), 63-79. | MR | Zbl
- - ,[6] On the role of distance function in some singularly perturbed problems, Comm. PDE 25 (2000), 155-177. | MR | Zbl
- - ,[7] Pattern formation in generalized Turing systems, I. Steady-state patterns in systems with mixed boundary conditions, J. Math. Biol. 32 (1994), 345-393. | MR | Zbl
- - ,[8] Mutiple peak solutions for some singular perturbation problems, Cal. Var. PDE 10 (2000), 119-134. | MR | Zbl
- - ,[9] On the location of spikes of solutions with two sharp layers for a singularly perturbed semilinear Dirichlet problem, J. Diff. Eqns. 157 (1999), 82-101. | MR | Zbl
- ,[10] Multipeak solutions for a singular perturbed Neumann problem, Pacific J. Math. 189 (1999), 241-262. | MR | Zbl
- ,[11] Existence and non-existence results for semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A 93 (1982), 1-14. | MR | Zbl
- ,[12] The set of positive solutions of semilinear equations in large balls, Proc. Roy. Soc. Edinburgh Sect. A 104 (1986), 53-72. | MR | Zbl
- ,[13] Multiple interior spike solutions for some singular perturbed Neumann problems, J. Diff. Eqns. 158 (1999), 1-27. | MR | Zbl
- ,[14] On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Can. J. Math. 52 (2000), 522-538. | MR | Zbl
- ,[15] Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000), 249-289. | EuDML | Numdam | MR | Zbl
- - ,[16] Symmetry of positive solutions of nonlinear elliptic equations in , In: “Mathematical Analysis and Applications, Part A”, Adv. Math. Suppl. Studies 7A, Academic Press, New York, 1981, pp. 369-402. | MR | Zbl
- - ,[17] Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory, Cal. Var. PDE 11 (2000) 143-175. | MR | Zbl
- - ,[18] Uniqueness of positive solutions of in , Arch. Rational Mech. Anal. 105 (1989), 243-266. | MR | Zbl
,[19] On a singularly perturbed equation with Neumann boundary condition, Comm. PDE 23 (1998), 487-545. | MR | Zbl
,[20] The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math. 51 (1998), 1445-1490. | MR | Zbl
- ,[21] The concentration-compactness principle in the calculus of variations, the locally compact case, I., Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 109-145. | EuDML | Numdam | MR | Zbl
,[22] The concentration-compactness principle in the calculus of variations, the locally compact case, II., Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 223-283. | EuDML | Numdam | MR | Zbl
,[23] “Generalized solutions of Hamilton-Jacobi equations”, Pitman, 1982. | MR | Zbl
,[24] Large amplitude stationary solutions to a chemotaxis systems, J. Diff. Eqns. 72 (1988), 1-27. | MR | Zbl
- - ,[25] Diffusion, cross-diffusion, and their spike- layer steady states, Notices of Amer. Math. Soc. 45 (1998), 9-18. | MR | Zbl
,[26] On the shape of least energy solution to a semilinear Neumann problem, Comm. Pure Appl. Math. 41 (1991), 819-851. | MR | Zbl
- ,[27] Locating the peaks of least energy solutions to a semilinear Neumann problem, Duke Math. J. 70 (1993), 247-281. | MR | Zbl
- ,[28] Point-condensation generated by a reaction-diffusion system in axially symmetric domains, Japan J. Industrial Appl. Math. 12 (1995), 327-365. | MR | Zbl
- ,[29] On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems: intermediate solutions, Duke Math. J. 94 (1998), 597-618. | MR | Zbl
- - ,[30] On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math. 48 (1995), 731-768. | MR | Zbl
- ,[31] On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem, J. Diff. Eqns. 129 (1996), 315-333. | MR | Zbl
,[32] On the boundary spike layer solutions of singularly perturbed semilinear Neumann problem, J. Diff. Eqns. 134 (1997), 104-133. | MR | Zbl
,[33] On the interior spike layer solutions to a singularly perturbed Neumann problem, Tohoku Math. J. 50 (1998), 159-178. | MR | Zbl
,[34] On the effect of the domain geometry in a singularly perturbed Dirichlet problem, Diff. Int. Eqns. 13 (2000), 15-45. | MR | Zbl
,[35] Stationary solutions for the Cahn-Hilliard equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998), 459-492. | EuDML | Numdam | MR | Zbl
- ,[36] Multiple boundary spike solutions for a wide class of singular perturbation problems, J. London Math. Soc. 59 (1999), 585-606. | MR | Zbl
- ,