The intersection of a curve with algebraic subgroups in a product of elliptic curves
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 2 (2003) no. 1, pp. 47-75.

We consider an irreducible curve 𝒞 in E n , where E is an elliptic curve and 𝒞 and E are both defined over ℚ ÂŻ. Assuming that 𝒞 is not contained in any translate of a proper algebraic subgroup of E n , we show that the points of the union â‹ƒđ’žâˆ©A(ℚ ÂŻ), where A ranges over all proper algebraic subgroups of E n , form a set of bounded canonical height. Furthermore, if E has Complex Multiplication then the set â‹ƒđ’žâˆ©A(ℚ ÂŻ), for A ranging over all algebraic subgroups of E n of codimension at least 2, is finite. If E has no Complex Multiplication then the set â‹ƒđ’žâˆ©A(ℚ ÂŻ) for A ranging over all proper algebraic subgroups of E n of codimension at least n 2+2, is finite.

Classification: 11D45, 11G50
@article{ASNSP_2003_5_2_1_47_0,
     author = {Viada, Evelina},
     title = {The intersection of a curve with algebraic subgroups in a product of elliptic curves},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {47--75},
     publisher = {Scuola normale superiore},
     volume = {Ser. 5, 2},
     number = {1},
     year = {2003},
     mrnumber = {1990974},
     zbl = {1170.11314},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_2003_5_2_1_47_0/}
}
TY  - JOUR
AU  - Viada, Evelina
TI  - The intersection of a curve with algebraic subgroups in a product of elliptic curves
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2003
SP  - 47
EP  - 75
VL  - 2
IS  - 1
PB  - Scuola normale superiore
UR  - http://archive.numdam.org/item/ASNSP_2003_5_2_1_47_0/
LA  - en
ID  - ASNSP_2003_5_2_1_47_0
ER  - 
%0 Journal Article
%A Viada, Evelina
%T The intersection of a curve with algebraic subgroups in a product of elliptic curves
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2003
%P 47-75
%V 2
%N 1
%I Scuola normale superiore
%U http://archive.numdam.org/item/ASNSP_2003_5_2_1_47_0/
%G en
%F ASNSP_2003_5_2_1_47_0
Viada, Evelina. The intersection of a curve with algebraic subgroups in a product of elliptic curves. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 2 (2003) no. 1, pp. 47-75. http://archive.numdam.org/item/ASNSP_2003_5_2_1_47_0/

[1] E. Bombieri - D. Masser - U. Zannier, “Intersecting a Curve with Algebraic Subgroups of Multiplicative Groups”, International Mathematics Research Notices 20, 1999. | MR | Zbl

[2] E. Bombieri - J. D. Vaaler, On Siegel's Lemma, Invent. Math. 73 (1983), 11-32. | EuDML | MR | Zbl

[3] E. Bombieri - J. D. Vaaler, Addendum to: On Siegel's Lemma, Invent. Math. 75 (1984), 377. | EuDML | MR | Zbl

[4] W. Burnside, “Theory of Groups of Finite Order”, 2 ed., Dover Publ., New York, 1955. | JFM | MR | Zbl

[5] J. W. S. Cassels, “An Introduction to the Geometry of Numbers”, Springer-Verlag, 1971. | MR | Zbl

[6] S. David, Points de petite hauteur sur les courbes elliptiques, J. Number Theory 64 (1997), 104-129. | MR | Zbl

[7] S. David - M. Hindry, Minoration de la hauteur de Néron-Tate sur le variétés abéliennes de type C.M., J. Reine Angew. Math. 529 (2000) 1-74. | MR | Zbl

[8] G. Faltings, EndlichkeitssĂ€tze fĂŒr abelsche VarietĂ€ten ĂŒber Zahlkörpern, Invent. Math. 73 (1983), 349-366. | EuDML | MR | Zbl

[9] M. Hindry, Autour d'une conjecture de Serge Lang, Invent. Math. 94 (1988), 570-603. | EuDML | MR | Zbl

[10] S. Lang, “Fundamentals of Diophantine Geometry”, Springer-Verlag, 1993. | MR | Zbl

[11] M. Laurent, Equations diophantiennes exponentielles, Invent. Math. 78 (1984), 299-327. | MR | Zbl

[12] D. Masser, Counting points of small height on elliptic curves, Bull. Soc. Math. France 117, 1989, no. 2, 247-265. | Numdam | MR | Zbl

[13] D. Masser - G. WĂŒstholz, Fields of Large Transcendence Degree Generated by Values of Elliptic Functions, Invent. Math. 72 (1983), 407-464. | MR | Zbl

[14] J. S. Milne, Abelian Varieties, In: “Arithmetic Geometry”, G. Cornell - J. Silverman (eds), Springer-Verlag, 1986. | MR | Zbl

[15] M. Raynaud, Courbes sur une variété abélienne et points de torsion, Invent. Math. 71 (1983), 207-233. | MR | Zbl

[16] M. Raynaud, Sous-variĂ©tĂ©s d'une variĂ©tĂ© abĂ©lienne et points de torsion, In: “Arithmetic and Geometry”, (dĂ©diĂ© Ă  Shafarevich), BirkhĂ€user, 1, 1983, 327-352. | MR | Zbl

[17] H. P. Schlickewei, Lower bounds for heights on finitely generated groups, Monatsh. Math. 123 (1997), 171-178. | MR | Zbl

[18] J-P. Serre, Proprieté Galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259-331. | MR | Zbl

[19] J-P. Serre, “Corps locaux”, Hermann Paris, 1968. | MR | Zbl

[20] J-P. Serre, Local class field theory, In: “Algebraic Number Theory”, J. W. S. Cassels - A. Fröhlich (eds.), Academic Press, London, 1967, 129-162. | MR

[21] J-P. Serre, “Lectures on the Mordell-Weil Theorem”, Friedr. Vieweg & Sohn, 1989. | MR | Zbl

[22] J. Silverman, “Advanced Topics in the Arithmetic of Elliptic Curves”, Springer-Verlag, 1994. | MR | Zbl

[23] J. Silverman, “The Arithmetic of Elliptic Curves”, Springer-Verlag, 1986. | MR | Zbl