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Connecting Topological Hopf Singularities

ROBERT HARDT – TRISTAN RIVIÈRE

Abstract. Smooth maps between Riemannian manifolds are often not strongly
dense in Sobolev classes of finite energy maps, and an energy drop in a limiting
sequence of smooth maps often is accompanied by the production (or bubbling)
of an associated rectifiable current. For finite 2-energy maps from the 3 ball to
the 2 sphere, this phenomenon has been well-studied in works of Bethuel-Brezis-
Coron and Giaquinta-Modica-Soucek where a finite mass 1 dimensional rectifiable
current occurs whose boundary is the algebraic singular set of the limiting map.
The relevant algebraic object here is π2(S2) which provides both the obstruction
to strong approximation by smooth maps and the topological structure to the
bubbling set and the singular set. With higher homotopy groups, new phenomena
occur. For π3(S2) and the related case of finite 3-energy maps from the 4 Ball to
the 2 sphere, there are examples with bubbled objects that no longer have finite
mass. We define a new object, a scan, which generalizes a current but still occurs
naturally in bubbling while automatically providing the topological connection
between the singularities of the limit map. The bubbled scans, which are found
via a new compactness theorem, again enjoy a representation using a finite measure
1 rectifiable set and an integer density function which is now however only L3/4

(rather than L1) integrable.

Mathematics Subject Classification (2000): 58D15 (primary), 58E20, 49Q15
(secondary)

0. – Introduction

There are many interesting questions and works concerning the relation
between the topology of Riemannian manifolds M and N and the structure of
the various Sobolev spaces W s,p(M, N ) of maps between them. For example,
the space W 1,p(M, Sp) of finite p energy maps to the p sphere and issues
concerning the possible approximability by smooth maps have been well-studied
by F. Bethuel [Be1] and others using the notion of topological degree, which is
associated with πp(S

p). For dim : M < p, these Sobolev maps are automatically
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continuous. In the critical dimension dim M = p, one has the phenomenon of
bubbling whereby a weakly convergent sequence of smooth maps may, in the
limit, drop energy and topological degree and produce, in a suitable space,
auxiliary objects (bubbles) accounting for topological changes near a finite set
of points. In case dim M > p, the limiting map itself may have essential
topological singularities, detected by degree, which are topologically connected
by a bubbling set of dimension dim M − [p]. These are particularly well-
understood for dim M = 3, p = 2 [HL1], [BCL], [Be2], [BBC], [GMS1] where,
for example, the bubbling set carries a 1 dimensional finite mass rectifiable
current whose boundary is the topological singularities of the limit map.

In general, the homotopy group πp(N ) should be used to study the Sobolev
spaces W 1,p(M, N ). In the present paper we work with the Hopf invari-
ant, which is associated with π3(S

2), to understand spaces W 1,3(M, S2) where
dimM = 4. We discover some new phenomena. Examples in Section 2.5 show
that now the bubbled object can possibly have infinite one dimensional mass
and that the singularities that appear in weak limits of sequences of smooth
maps may possibly not bound any finite mass current. We define in Section 2
a new object, a scan, which generalizes a current but still occurs naturally in
bubbling while automatically providing the topological connection between the
singularities of the limit map. The bubbled scans, which are found in Section
6 via a new compactness theorem, again enjoy a representation in Section 7
using a finite measure 1 rectifiable set and an integer density function which is
now however only L3/4 integrable (rather than L1 integrable).

Background.

With the target manifold N viewed as isometrically embedded in a Eu-
clidean space Rk , one may define, for positive numbers p and s, with p ≥ 1,
the Sobolev space

W s,p(M, N ) = {u ∈ W s,p(M, Rk) : u(x) ∈ N for a.e. : x ∈ M} ,

where the vector space W s,p(M, Rk) is obtained from W s,p
loc (Rdim M , Rk) using

local coordinate charts for M .

In contrast to the vector-space case N = Rk , some Sobolev maps u ∈
W s,p(M, N ) do not admit approximation by a sequence of smooth maps un ∈
C∞(M, N ) in the strong or even in the weak W s,p(M, N ) topologies. Questions
about density of C∞(M, N ) in W s,p(M, N ) arise naturally for example from the
study of variational problems among manifolds such as with harmonic maps,
etc. [SU], [W1], [W2], [HL1], [BZ], [Be1], [BCL], [BBC], [GMS2]. Recently
the path-connectness of W 1,p(M, N ) has been studied in [BL], [HgL1], [HgL2].

As a first approach to the notion of topological singularity, with M being
the open unit ball Bm in Rm , we may define the topological singular set of a map
u ∈ W s,p(Bm, N ) as the largest open subset of Bm on which u is W s,p strongly
approximable. The obstruction to the strong approximation is characterized by
the appearance, locally around the singularities of u, of nonzero elements of
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πk(N ) where k = [sp], the integer part of sp. For example, the fact [SU]
that the map u : B3 → S2, u(x) = x/|x |, is not strongly approximable in
W 1,p(B3, S2) (for2 ≤ p ≤ 3) by regular maps is due to the realization of a
nonzero element of π2(S

2) on spheres surrounding the singularity 0. More
generally, one has, for s = 1,

Theorem 0.1 [SU], [BZ], [Be1]. The space C∞(Bm, N ) is strongly dense in
W 1,p(Bm, N ) if and only if

p ≥ m or π[p](N ) = 0 .

As recently observed by F. Hang and F.H.Lin [HgL1], [HgL2], this sufficient
condition for strong density does not extend to an arbitrary domain. The map v

from CP3 to CP2, defined in homogeneous coordinates by v
(
[z1, z2, z3, z4]

) =
[z1, z2, z3], has a singularity at a = [0, 0, 0, 1] and admits no global strong
approximation by smooth maps. While the above theorem gives the existence
of local obstructions due only to π[p](N ), this counterexample illustrates global
obstruction. Here the singularity is delocalized in the sense that one may very
well approximate the above v strongly in W 1,3(CP3, CP2) by maps smooth in a
fixed neighborhood of a because, one may, with arbitrarily small energy, “order
the globally essential singularity to reappear somewhere else.” By contrast, the
local obstructions are fixed in space: it is impossible to strongly approximate
u(x) = x/|x | in W 1,2(B3, S2) by a sequence of maps smooth in a fixed neigh-
borhood of the limit singularity 0. This is the phenomenon that we wish to
study here, and we will thus restrict especially to the domain M = Bm . We
also restrict to the case s = 1 although certain results below extend to fractional
Sobolev spaces (see [Be3], [Ri2]).

Whenever π[p](N ) �= 0, C∞(M, N ) is too small to “cover by strong density”
all of W 1,p(Bm, N ), and one uses the following larger space

R∞,p(Bm, N ) = {u ∈ C∞(Bm \ A, N ) ∩ W 1,p : A is an n − [p] − 1

dimensional smooth cell complex and [u|Sx A] �= 0 in π[p](N ) for a.a. : x ∈ A}
where u|Sx A is the restriction of u to any sufficiently small [p] dimensional
sphere normal to A at x . One then has the following:

Theorem 0.2 [Be1]. For [p] > 1, R∞,p(Bm, N )
W 1,p = W 1,p(Bm, N ).

For example, R∞,2(B3, S2) consists of maps u ∈ W 1,2(B3, S2) that are
smooth away from a finite set A and whose restriction to any small spheres about
a point of K has nonzero degree. In particular, u(x) = x/|x | ∈ R∞,2(B3, S2) \
C∞(B3, S2)

W 1,2

.

Definition. For u ∈ R∞,p(Bm, N ) one defines the topological singularity
of u, Singtopu as the flat π[p](N ) chain obtained from the singular set K by
assigning to each point x ∈ K the representative of [u|Sx K ] in π[p](N ). Flat
G chains are defined in [Fl] (see also [F], [GMS2], [W3]). For example the
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topological singularity of an element of R∞,1(B3, RP2) is a sum of disjoint
unoriented curves in B3 because π1(RP2) = Z2.

The general question motivating the present paper is the following. Being
given a sequence un in R∞,p(Bm, N ), converging strongly in W 1,p(Bm) to a limit
u, may one experience some convergence of the flat π[p](N ) chains Singtopun to
a limit “object Singtopu” which will depend only on u and will characterize the
approximability of u by smooth maps in W 1,p

(
in particular, if Singtopu = 0,

then u ∈ C∞(Bm, N )
W 1,p)

.
As we will see below, the understanding of the behavior of the topological

singularities of maps strongly convergent in W 1,p is linked to the problem of
weak sequential density.

A well-understood case: �p(S
p).

One may consider W 1,p(Bm, Sp) where m > p are positive integers. For
simplicity we treat the specific case p = 2, m = 3, keeping in mind that the
set of results below extends to the general case.

So consider un ∈ R∞,2(B3, S2) strongly convergent in W 1,2 to u ∈
W 1,2(B3, S2). Then Singtopun is simply a finite sum of integer multiples of
point masses

∑
a∈An

mn,a[[a]]. It isn’t difficult to see that these distributions
are characterized by the formula

∑
a∈An

mn,a[[a]] = ∗d u#
n

(
ω

S2

2π

)

where ω
S2 is the volume form of S2. From the strong W 1,2 convergence of un

one deduces without difficulty the convergence

Singtopun = ∗d u#
n

(
ω

S2

2π

)
→ ∗d u#

(
ω

S2

2π

)
in D′(B3) ,

independent of un , which is the desired topological singularity of u. On has
also the

Theorem 0.3 [Be2]. d u#ω
S2 = 0 ⇐⇒ u ∈ C∞(B3, S2)

W 1,2

.

The relation between the topological singularities and the weak convergence
of smooth maps is understood by means of the following

Theorem 0.4 [Be2], [BCL], [GMS2]. For u ∈ W 1,2(B3, S2), there exists a 1
dimensional rectifiable current such that ∂ I = ∗d(u#ω

S2) and

8πM(I ) ≤
∫

B3
|∇u|2

where M(I ) is the mass (or length) of I .
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In order to approximate a map u having d(u#ω) �= 0 weakly by smooth
maps, it suffices to “withdraw” the topological singularities using a finite amount
of W 1,2 energy. This is accomplished (see [Be2]) by inserting some coverings
of S2 along I which, by the above estimate, costs exactly 8πM(I ) + ε (with ε

being arbitrarily small). One thus obtains the sequential weak density:

Theorem 0.5 [Be2]. For any u in W 1,2(B3, S2) there exists un in C∞(B3, S2)

which converge weakly to u in W 1,2.

Finally there is another elegant method of characterizing the topological
singularity of a map in W 1,2(B3, S2), constant on ∂B3, as being the “holes” of
its graph.

Theorem 0.6 [GMS1]. For any sequence of maps un ∈ C∞(B3, S2) that is
W 1,2 weakly convergent to u ∈ W 1,2(B3, S2), there exists a subsequence un′ and a
one dimensional rectifiable current I , so that one has the weak convergence of the
three dimensional rectifiable currents

Graph(un′) → Graph(u) + I × [[S2]] .

Moreover,

∂Graph(u) = ∂ I × [[S2]] with ∂ I = ∗d u#
(

ω
S2

2π

)
.

An example of a more complex case: π3(S
2).

This is the first case of an infinite homotopy group of spheres which is
different from πp(S

p). Thus in the present paper we take N = S2, m =
4 and p = 3 and work with the Sobolev space W 1,3(B4, S2). The space
R∞,3(B4, S2) which now consists of maps in W 1,3(B4, S2) which are smooth
outside a finite set of points and realize the nontrivial elements of π3(S

3)  Z on
sufficiently small spheres centered at these points. Once again the topological
singularity is identified with finite atomic measures having integer multiplicities.
Also R∞,3(B4, S2) is again strongly dense in W 1,3(B4, S2) [Be1]. Criteria for
a given map in W 1,3(B4, S2) to be strongly approximable by smooth maps
have been obtained by Zhou [Z] and Isobe [I1] who also considered [I2] gap
phenomena [HL1] for this space. Being given a sequence un of elements of
R∞,3(B4, S2) strongly convergent to a map u in W 1,3(B4, S2) one again poses
the question about the limit of the topological singularities Singtopun . Recall
that the homotopy class in π3(S

2) of a regular map ψ : S3 → S2 is given by
the Hopf degree of ψ , which is topologically the linking number of the inverse
images of two regular values of ψ and is analytically given by the integral

Hopf degree(ψ) = 1

4π2

∫
η ∧ ψ#ω

S2
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where η is any 1-form on S3 verifying dη = ψ#ω
S2 . A simple integration by

parts then shows us that, similar to the case of R∞,2(B3, S2), the topological
singularity of the map un ∈ R∞,3(B4, S2) may be written

Singtopun =
∑

a∈An

mn,a[[a]] = ∗d
[
ηn ∧ u#

n

(
ω

S2

2π

)]

where ηn is any 1-form on B4 \ An verifying dηn = u#
nωS2 . Our principal

preoccupation is then to study a possible convergence of ∗d
(
ηn ∧u#

nωS2
)

and for
example to verify whether, as in the case of W 1,2(B3, S2), or not there exists a
sequence of 1 dimensional currents In having ∂ In = ∑

a∈An
mn,a[[a]] and having

uniformly bounded masses (i.e. ‖∑a∈An
mn,a[[a]]‖W−1,1 ≤ C independent of

n). However, such an attempt runs into the basic problem of the actualfailure
of suitable bounds for these convergences.

To see this failure, one starts with u ∈ W 1,3(B4, S2) and first proves without
difficulty that du#ω

S2 = 0 and that the 1-form η verifying dη = u#ω
S2 of

“maximal” regularity is a priori the Coulomb gauge which is the solution of

dη = u#ω
S2 in D2(B4)

d∗η = 0 in D1(B4)

ι#
∂B4η = 0

where ι∂B4 is the inclusion of ∂B4 into R4. Since the form u#ω
S2 is only in

L3/2(B4), the solution η of this problem is in L12/5(B4) ⊃⊃ L3(B4), thus a
priori η ∧ u# is not in L1

loc(B
4), and it seems difficult to give this a meaning

even in D′(B4). In [R1] the second author showed in fact that the above small
calculation is optimal in establishing that

(0.2) log inf
{∫

S3
|ψ |3 dH3 : ψ : S3 → S3, Hopf degree(ψ) = d

}
≈ 3

4
log d

as d → ∞. This 3/4, which replaces the 1 that occurs in minimizing p-energy
among (topological) degree d maps from Sp to Sp, appears when one expresses
the Hopf degree by means of the above Coulomb gauge. One shows that it is
optimal by using maps whose inverse images are self-linked (see [R1]). This
is the source of all the difficulties encountered below in this paper. Using the
argument of Section 2.5, this 3/4 estimate allows us to construct a sequence
un ∈ R∞,3(B4, S2) such that

un → u strongly in W 1,3

but
inf {M(In) : ∂ In = Singtopun} → +∞ ,
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and one does not see a priori how Singtopun may converge in D′(B4). It
is necessary to envision some convergences in larger spaces for some objects
whose masses may tend to infinity.

Introduction of “Scans”.

In face of the impossibility of getting convergence in D′(B4) of our topo-
logical singularities of maps un ∈ R∞,3(B4, S2) strongly convergent to a u ∈
W 1,3(B4, S2), we will adapt the approach that Giaquinta, Modica, and Souček
[GMS1], [GMS2] used for the case πp(S

p), and we will be interested in a
possible convergence of a sequence of graphs of smooth maps in C∞(B4, S2).

Therefore let un ∈ C∞(B4, S2) converge W 1,3 weakly to u ∈ W 1,3(B4, S2).
One will suppose for simplicity that un and u are constant on ∂B4 (see Section
2.3). It is not difficult to see that, for all u ∈ W 1,3(B4, S2), the graph of u is
a rectifiable current satisfying

∂ Graph(u) = 0 in B4 .

In fact u may be approximated strongly by a map v ∈ R∞,3(B4, S2) and the 3
dimensional flat current ∂ Graph(v), being supported in B4 in the 2 dimensional
set sing(v) × S2, must vanish [F], 4.1.21.

The boundary of the graph thus does not characterize, in this case, the
failure of the strong approximability by smooth maps. On the other hand, one
can prove, from the vanishing of π1

(
B4 \ Singtop(v)

)
, the existence of a Hopf

lifting ṽ of v for the Hopf map � : S3 → S2 (i.e. ṽ : B4 → S3 and � ◦ ṽ = v).
For such a v one has that

∂ Graph(ṽ) = Singtopv × [[S3]]

so that the boundary of the graphs of Hopf lifts do characterize the topological
singularities. One is therefore led to take a smooth Hopf lifting ũn of the map
un and study the possible convergence of Graph ũn to a limit object in the form
“Graph ũ + I × [[S3]]” where I will be a “reasonable” object connecting the
topological singularities of u. There exist a lifting operation for the Hopf fibra-
tion which is associated (Section 2.1) with the extraction of the Coulomb gauge
described above. Let ũn denote such a Coulomb lift for which one then has
control in W 1,5/12 but not in W 1,3 as seen by the example of Section 2.5. While
Example 2.5 shows the possibility that M

(
Graph(ũn)

) → ∞, we nevertheless
establish in Section 2.4 an L3/4 bound for the mass of hyperplanar slices.

More precisely, for each unit vector v ∈ S3 and t ∈ R, we have the
corresponding hyperplane h(v, t) = {x ∈ R4 : × · v = t} oriented by the normal
vector v. Intersecting the 4 dimensional current Graph(ũn) by h(v, t) × [[S3]],
or equivalently slicing [F], 4.3, by the projection (x, y) �→ x · v, gives the 3
dimensional current Graph

(
ũn|h(v, t)

)
corresponding to restricting ũn to the

hyperplane h(v, t). We show

(0.1) sup
v∈S3

∫ 1

−1
M3/4[Graph

(
ũn|h(v, t) ∩ B4)] dt ≤ C

(
1 +

∫
B4

|∇u|3 dx
)

.
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Such control on the integral of the masses of the slices to a power less than 1
suggests characterizing an object as a collection of all (or almost all) its slices.
This is the notion of a scan which we will define below.

As motivation, consider the following simplified problem where one is
given a sequence of unions of immersed oriented closed curves 	n = ∪k	

k
n in

the closed unit ball in R2 satisfying the bound

(0.2) sup
v∈S1

∫ 1

−1
Cardα

(
	n ∩ L(v, t)

)
dt ≤ C independent of n .

where L(v, t) denotes the line {x ∈ R2 : x · v = t}. If α = 1, then this bound
gives us control on the mass (or total length) of the 1 dimensional current 	n ,
independent of n. Knowing that ∂	n = 0, one is then in position to apply the
Compactness theorem of Federer-Fleming and deduce that, after passing to a
subsequence, the 	n converge to a limit rectifiable current 	.

When α < 1, (0.2) does not guarantee control of the total length M(	n),
and there is no reasoning that allows us to deduce some convergence of the
	n as distributions. One thus introduces a map µn from the space of oriented
lines S1 × R to the space M of atomic measures on R2 which at almost every
(v, t) associates the 0 dimensional intersection current

µn(v, t) = 	n ∩ L(v, t)

which is a sum of point masses with integer multiplicities. Being given a
reference frame {e1, e2} of R2, one equips M with the following metric

d(µ, µ′) = inf


Mα(S) +

2∑
j=1

∫ 1

−1
Mα

(
	n ∩ L(ej , s)

)
ds : µ − µ′ = S + ∂T


 ,

and one verifies that the above µn is a measurable function from S1 × R to M
equipped with the topology induced from the metric d .

The current equation ∂	n = 0 translates to a new boundary zero condition
for the corresponding scan µn (see Section 1) which is a compatibility condition
allowing one to see that µn is the scan of an underlying closed object in the
plane. Also estimate (0.2) and this boundary zero condition imply the following
regularity estimate:

d
(
µn(v, t), µ′

n(v, t ′)
) ≤ Fn(t)|t − t ′|α

for all v ∈ S1 and some Fn in L1/α(R) weak = L1/α,∞ with

‖Fn‖L1/α,∞ ≤ C sup
v∈S1

∫ 1

−1
Mα

(
	n ∩ L(v, s)

)
ds .
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Such uniform control of this regularity permits us then to establish, after passing
to a subsequence, convergence a.e. of µn to a scan limit µ, a limiting object
at least which, though a priori strange, is convenient to study in the particular
cases we consider. When α = 1, we recover the characterization by Ambrosio
and Kirchheim of rectifiable objects by means of a weakly BV maps with values
in metric spaces. See also White’s rectifiability proof [W3].

Returning now to the original problem of the sequence un of maps in
C∞(B4, S2) converging weakly in W 1,3 to u. To each un one may associate the
scan of its Coulomb lift

Gũn : S2 × R → R3(B
4 × S2) , Gũn (v, t) = Graph

(
ũn|h(v, t)

)
,

the space R3(B
4 ×S2) denoting the 3 dimensional rectifiable currents in B4 ×S2.

On R3(B
4 × S2) one considers the distance

de(P, Q) = inf


M(S) +

4∑
j=1

∫
M
(
T ∩ h(ej , t)

) 3
4 dt : P − Q = S + ∂T




where e = (e1, e2, e3, e4) is a fixed frame of R4. This time the control of (0.1)
translates to a regularity for the scan Gũn :

d
(
Gũn (v, t), Gũn (v, t ′)

) ≤ Fn(t)|t − t ′| 3
4

for all v ∈ S3 and some Fn in L4/3,∞ with

‖Fn‖L4/3,∞ ≤ C
(

1 +
∫

B4
|∇un|3 dx

)
.

Rather than referring to general properties of the space L4/3,∞, we prove in
Section 9, for the reader’s convenience, the appropriate precise compactness
statement needed. With this, we then establish the following result which is
the analogue for W 1,3(B4, S2) of Theorem 0.6.

Theorems 6.1, 7.2. Suppose that un ∈ C∞(B4, S2) converge weakly in W 1,3 to
u. Then, after passing to a subsequence, one has the convergence almost everywhere
of scans of Coulomb lifts

Gũn → Gũ + I × [[S3]]

where I × [[S3]] is the scan of a rectifiable set R × S3 in B4 × S3 equipped with an
integer multiplicity θ , measurable on 	, such that

∫
R

|θ | 3
4 dH1 < ∞ .



296 ROBERT HARDT – TRISTAN RIVIÈRE

In the sense of scans,

∂
(
Gũ + I × [[S3]]

) = 0 in B4 .

While it is still unknown whether an arbitrary map u ∈ W 1,3(B4, S2) is
such a weak limit of smooth maps, we can nevertheless still use the scan Gũ

of the graph of its Coulomb lift to express the strong approximability criterium

Lemma 2.7.

u ∈ C∞(B4, S2)
W 1,3

⇐⇒ ∂Gũ = 0 in B4 .

In any case, this scan boundary may again be capped off by a vertical scan:

Theorem 8.1.If u is any element of the Sobolev space W 1,3(B4, S2), then

∂
(
Gũ + I × [[S3]]

) = 0 in B4

where, for all v ∈ S3 and a.e. t ∈ R,

(
I × [[S3]]

)(
h(v, t)

) =
∑

a∈Av,t

mv,t [[a]] × [[S3]] ,

for some finite subset Av,t of h(v, t) and non-zero integers mv,t with

∫
R


 ∑

a∈Av,t

mv,t




3
4

dt ≤ C
(

1 +
∫

|∇u|3 dx
)

.

We can use this estimate to show only that the I of Theorem 8.1 is carried by
a set of finite H4/3 measure, and not, as in the case of Theorem 7.2, carried by
a 1 rectifiable set. In fact the optimal structure of such an I seems related to
the question of the weak sequential density of C∞(B4, S2) in W 1,3(B4, S2). For
general Sobolev spaces of mappings, strong approximability by smooth maps
has been well-studied (see [Be1], [HgL1], [HgL2]), but the same problems for
the weak topology are still largely open. (see [PR]).

As we have argued here and in the seminar [HR1], the scans defined in this
work allow one to study Sobolev mappings via their graphs by exploiting esti-
mates valid on restriction to hyperplanar subspaces. Approximation properties
characterized by restricting to lower dimensional subspaces also occurs in the
work [M] of Mucci. Our limiting objects however are no longer currents, and
the scans we introduce thus strictly extend and generalize the Cartesian currents
of [GMS2]. General rectifiable currents (not necessarily related to smooth map-
pings) have also been understood and well-studied through slicing [AK], [W3].
So general scans (as in the motivating example (0.2)) should provide a useful
extension of various classes of currents. The second author and T. DePauw
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[HD] have studied some compactness, rectifiability, and variational problems
for such scans.

Recently [HR3] we have also realized another argument for W 1,3(B4, S2)

for producing a suitable connecting “bubbled” scan I which avoids the use of
Hopf liftings. This approach allows, for an arbitrary manifold N , identification
of suitable connections for those topological singularities that issue from the
infinite part of πp(N ), πp(N )⊗Q. In [HR3] we study certain Gauss integrals in
product spaces and the Novikov integral expressions [Nov] of rational homotopy.
The use of scans again seems necessary to expedite such an approach. One
expects, in fact, because of considerations which led to the above 3/4 and
to the exponents of Gromov [Gr], that this power should be replaced by other
powers strictly less than 1 (except in the simple case πp(S

p) described above)
and that therefore the masses of these connections I should again be infinite.

The torsion part of homotopy groups may also contribute to bubbling, failure
of strong density, topological singularity, etc. Much less is known. Pakzad
and Riviére [PR] studied π1(RP2) ≈ Z2 and more generally πm−1

(
(m − 2)−

connected N
)
. In [HR2] we analyze the effect of π4(S

3) ≈ Z2 on the second
order Sobolev space W 2,2(B5, S3).

1. – Hyperplanes in R4 and scans

We identify S3 × R with the space H of oriented hyperplanes in R4 by
associating with each pair (v, t) ∈ S3 × R the hyperplane

h(v, t) ≡ {x ∈ R4 : x · v = t}

oriented by the normal vector v. Thus H is equipped with the standard metric
of S3 × R and the 4 dimensional Hausdorff measure (H3|S3) × H1, that is,
dh(v, t) = dH3v dt .

We also occasionally let h = h(v, t) denote the corresponding 3 dimensional
current (See [F], [S], [GMS2] for notations.) that is the boundary of the
standardly-oriented half-space,

h = ∂ [[{x ∈ R4 : x · v < t }]] .

The orientation is described by either the constant tangent 3 vector �h or by the
dual normal 1 vector �h ∗ = v.

We will study a smooth map w ∈ C∞(R4, S3) in terms of its restrictions
to hyperplanes. In particular, for any h ∈ H , we consider the oriented graph of
w restricted to H as the 3 dimensional current

Gw#h = where Gw(x) = (
x, w(x)

)
.
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Thus, Gw#h ∈ R3,loc where we here use the abbreviations

Ri = Ri (R
4 × S3) , Ri,loc = Ri,loc(R

4 × S3) ,

for the groups of i dimensional integer-multiplicity rectifiable and locally recti-
fiable currents in R4 × S3 ([F], [S], [GMS2]).

We also need various projections:

p : R4 × S3 → R4 , p(x, y) = x ,

q : R4 × S3 → S3 , q(x, y) = y ,

πv : R4 → R , πv(x) = v · x ,

pv = πv ◦ p : R4 × S3 → R , pv(x, y) = v · x ,

for x ∈ R4, y ∈ S3, and v ∈ S3.
In terms of boundary or slicing (see [F], 4.3 or [S],),

Gw#h(v, t) = ∂
(
Gw#[[π−1

v (−∞, t)]]
) =< Gw#[[R4]], pv, t > .

Note that
∂Gw#h = Gw#∂h = 0 ,

p#Gw#h = h , q#Gw#h = w#h .

Moreover, for any two hyperplanes h, h′ ∈ H , we have the compatibility
property that (

Gw#h
) ∩ (

h′ × [[S3]]
) = (

Gw#h′) ∩ (
h × [[S3]]

)
because(

Gw#h(v, t)
) ∩ (

h(v′, t ′) × [[S3]]
) =<< Gw#[[R4]], pv, t >, pv′, t ′ >

=<< Gw#[[R4]], pv′, t ′ >, pv, t >

= (
Gw#h(v′, t ′)

) ∩ (
h(v, t) × [[S3]]

)
.

In general, we define a scan to be any function

S : H → R3

satisfying
S(h) ∩ (

h′ × [[S3]]
) = S(h′) ∩ (

h × [[S3]]
)

for almost every pair h, h′ ∈ H . The special scan S = Gw# is called the
scan of the map w ∈ C∞(B4, S3). More generally, for any current T ∈ R4 with
p#T = [[R4]], there is an associated scan, ScanT , defined by the hyperpla-
nar intersection

(ScanT )(h) ≡ T ∩ (
h × [[S3]]

)
for a.e. h ∈ H,
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so that, in terms of slicing, (ScanT )
(
h(v, t)) =< T, pv, t > for a.e. t ∈ R.

Thus a scan may be considered as a generalization of a Cartesian current
([GMS2]).

The compatibility condition indicates that scans may be determined by their
values on a smaller family of hyperplanes, for example, the coordinate hyper-
planes associated with some orthonormal frame. This will be first illustrated
in Section 6 where use of standard coordinate hyperplanes will be sufficient to
establish the convergence of a sequence of scans of smooth maps. Actually,
our limiting scan will only be determined at almost every h ∈ H , but will
nevertheless inherit some properties from the scans of rectifiable currents.

In particular, we may define the notion of a scan cycle, that is, what it
means for a general scan to have zero boundary. For the scan of a smooth map
w ∈ C∞(R4, S3) and any subset U of R4 of locally finite perimeter

∂Gw#∂[[U ]]=Gw#∂∂[[U ]]=0 and Gw#∂[[U ]]
(
q#ω

S3
)=Gw#[[U ]]

(
q#dω

S3
)=0.

A definition suitable for general scans may be made by using polyhedral do-
mains.

A polyhedral frontier is a current ∂[[U ]] where U is an open polyhedral
domain in R4. For a polyhedral domain U with k distinct 3-dimensional faces,
we may represent

∂[[U ]] =
k∑

i=1

hi�∂U

where each hi is supported by the hyperplane containing some 3-face of ∂U
and �hi

∗
is the outward unit normal of this face. We now say that

∂ S = 0

(or that S is a span cycle) if, for almost all polyhedral frontiers ∂[[U ]] =∑k
i=1 hi�∂U as above, the rectifiable current

S∂U ≡
k∑

i=1

S(hi )�p−1(∂U )

satisfies the two conditions

∂
(
S∂U

) = 0 and S∂U
(
q#ω

S3
) = 0 .

Here, “almost all” means that an exceptional set Z of polyhedral frontiers has
measure zero in the sense that

{(h1, h2, . . . , hn) ∈ H n : ∂[[U ]] ∈ Z for some component U of R4 \ ∪n
i=1hi }

has measure zero in H n for all n. The necessity of the second condition in the
definition is shown by the oriented graph of x/|x |, which is a current in R4
with nonzero boundary [[0]]×[[S3]] whose corresponding scan satisfies the first,
but not the second condition. In fact, as we will see later, the graph of any
map in W 1,3(R4, S3) satisfies the first condition. For the scan of a rectifiable
current, we have the following:
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Lemma 1.1. If T ∈ R4,loc and M(∂T ) < ∞, then ∂T = 0 if and only if
∂(Scan T ) = 0.

Proof. For almost all polyhedral domains U as above, [F], 4.3 gives the
formula

(Scan T )∂U = ∂
(
T �p−1(U )

) − (
∂T

)
�p−1(U )) .

Thus if ∂T = 0 , then ∂
(
(Scan T )∂U

) = ∂∂
(
T �p−1(U )

) = 0 and

(Scan T )∂U
(
q#ω

S3
) = ∂

(
T �p−1(U )

)(
q#ω

S3
) = (

T �p−1(U )
)(

q#dω
S3
) = 0 .

Conversely, suppose ∂(Scan T ) = 0. Then, for almost all h(v, t) ∈ H ,

< ∂T, pv, t >= 0

because, we may, for any form φ ∈ D2(R4 × S3), choose a large polyhedral
domain U with ∂U ∩ spt φ = h(v, t) ∩ spt φ, hence, < ∂T, pv, t > (φ) =
∂
(
(ScanT )∂U

)
(φ) = 0.

It follows that, for ‖∂T ‖ almost all points z, the approximate tangent 3
plane Lz associated with

−→
∂T (z) has p(Lz) = 0. In fact, if p(Lz) contained a

line, then pv|Lz would have rank one for a.e. v ∈ S3. By [F], 4.3, this would
give

z ∈ spt < ∂T, pv, pv(z) >

for ‖∂T ‖ almost all such z, contradicting the vanishing of < ∂T, pv, t > for
a.e. t .

Thus
−→
∂T (z) = ±(0 ,

−−→
[[S3]]

(
q(z)

))
for ‖∂T ‖ almost all z, and, since ∂∂T =

0, an elementary argument [H], Th.1, shows that

∂T =
∑
a∈A

ma[[a]] × [[S3]]

for some finite subset A of R4 and some integers ma . Using now the second
condition of ∂

(
ScanT ) = 0 with almost any polyhedral domain U with U ∩ A =

{a} = U ∩ A, we deduce that

ma = (
(∂T )�p−1(U )

)(
q#ω

S3
) = (

(Scan T )∂U + ∂(T �p−1(U )
)(

q#ω
S3
) = 0+0.

Thus ∂T = 0.
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2. – The Hopf map and Coulomb lifting

Recall that the Hopf map

� : S3 → S2

may be described explicitly by the formula �(z, w) = z/ w where we identify
the domain S3 with

{(x1 + ix2, x3 + ix4) ∈ C2 : |x1|2 + |x2|2 + |x3|2 + |x4|2 = 1}

and the range S2 with the extended complex plane Ĉ via the usual stereographic
projection. One readily checks that

�(z, w) = �(z′, w′)if and only if (z, w) = eiθ (z′, w′)for someθ ∈ R .

Also, pulling back the volume form ω
S2 via � gives

�#ω
S2 = 4(dx1 dx2 + dx3 dx4) = 2dα

where α = x1 dx2 − x2 dx1 + x3 dx4 − x4 dx3.
Let M = S3, R3, R4 (or any oriented simply 2-connected Riemannian man-

ifold). For any smooth map u : M → S2, a smooth map û : M → S3 satisfying

� ◦ û = u

is called a Hopf lift of u and a smooth 1 form η on M satisfying

dη = u#ω
S2

is called a gauge for u. For a Hopf lift û of u, the formula

η = 2û#α

clearly defines a gauge for u. Conversely.

Lemma 2.1. Any gauge η for u ∈ C∞(M, S2) equals 2û#α for some Hopf
lift û of u. The lift û for η is unique up to multiplication by eiθ for some constant
θ ∈ R, and

|∇û|2 = 1

4
|η|2 + |∇u|2 .

Proof. First note that the u pull-back of the bundle � : S3 → S2 is a trivial
S1 bundle over M . Using a trivializing map, we readily find some smooth Hopf
lift ǔ of u. Since

d
(
2ǔ#α − η

) = 0 ,
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ǔ#α − 1/2η = dφ for some smooth φ : R4 → R. Then we readily verify that

û ≡ e−iφ ǔ

is a Hopf lift of u satisfying

2û#α = (
e−iφ ǔ

)#
α = 2

(
ǔ#α − dφ

) = η .

Also if ˆ̂u is another Hopf lift of u, then

ˆ̂u = e−iθ û

for some smooth θ : M → R because M is simply connected. Assuming in
addition that

2 ˆ̂u #α = η ,

we compute, as above, that

dθ = û#α − e−iθ û#α = 1

2
η − ˆ̂u #α = 0 ,

so that θ is a constant.
For the Hopf map � : S3 → S2, observe that the restriction of D� to the

orthogonal complement of the tangent space of any fiber is an isometry. Since
α orients every fiber, we find that, for each a ∈ M and unit tangent vector v

at a,
|Dũa[v]|2 = |αũ(a)

(
Dũa[v]

)|2 + |D�ũ(a)

(
Dũa[v]

)|2
= |(ũ#α)a[v]

)|2 + |Dua[v]|2

=
∣∣∣∣12ηa[v]

∣∣∣∣
2

+ |Dua[v]
)|2 ,

and the lemma follows.
For a smooth u : S3 → S2, the Hopf degree of u is the integer

1

2π2

∫
S3

η ∧ dη = degree (ũ) = 1

2π2

∫
S3

ũ#ω
S3 = 1

2π2
Gũ#[[S3]]

(
q#ω

S3
)

for any any gauge η of u or Hopf lift ũ of u. Incidentally, the normalizing
constant here,

H3(S3) = 2π2 ,

will be frequently used.
For a smooth u from R3 (respectively, R4) to S2 which is constant near

infinity, we can use the special Coulomb gauge [R1]

(2.1) η̃ ≡ d∗
[
− 1

8π |x | ∗ u#ω
S2

] (
respectively, d∗

[
− 1

4π2|x |2 ∗ u#ω
S2

])
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which, besides being a gauge for u, has the additional properties that

(2.2) d∗η̃ = 0 and |∇η̃| = |dη̃| = |u∗ω
S2 |

A Hopf lift ũ corresponding to the Coulomb gauge η̃ will be called a Coulomb
lift of u. Also for a smooth map u : S3 → S2, using stereographic projection
from S3 \ {(0, 0, 0, 1)} to R3 readily gives a corresponding Coulomb gauge and
Coulomb lift.

For a map u : S3 → S2 that is only W 1,3, the Hopf degree is still well-
defined as the degree of a W 1,3 lifting [R1] or via the associated gauge. It
can also be given by approximation since smooth maps are strongly dense
in W 1,3(S3, S2) [Be1]. Under this strong approximation, the corresponding
Coulomb gauges converge strongly in W 1,1 to a Coulomb gauge of u (as
defined by 2.1) and the Coulomb lifts converge strongly in W 1,3 to a lift ũ of
u that satisfies (2.2) weakly and hence pointwise a.e. in R3.

We need the following important lower bound [R1].

Lemma 2.2.

δ0 ≡ inf
{∫

S3
|∇u|3 dH3 : u ∈ W 1,3(S3, S2), Hopf deg (u) �= 0

}
> 0 .

Proof. We assume u ∈ C∞(S3, S2) with Coulomb lift û : S3 → S3 and with
3 energy

∫
S3 |∇u|3 dH3 ≤ 1. By Lemma 2.1, Sobolev embedding, and Hölder’s

inequality,

(
2π2)1/3 ≤

∣∣∣ ∫
S3

ũ#ω
S3

∣∣∣1/3 ≤ ‖∇ũ‖L3

≤
∥∥∥1

2
η̃
∥∥∥

L3
+ ‖∇u‖L3

≤ c‖∇η̃‖L3/2(h) + ‖∇u‖L3

= c‖u#ω
S2‖L3/2 + ‖∇u‖L3 ≤ (c + 1)‖∇u‖L3 ,

for some absolute constant c.

Now we turn to maps from a 4 dimensional domain to S2. It will be
notationally simpler to work with mappings defined on all of R4, that are
constant near infinity. The next extension lemma indicates how we may reduce
to this situation.

Suppose �0 is a bounded C1 domain in R4. We may construct C1 domains
�t so that �s ⊂ �t for −1 ≤ s < t ≤ 1 along with a retraction map ρ :
�1 \�−1 → ∂�0 so that the induced map sending x ∈ ∂�t to

(
ρ(x), t

)
gives a

C1 correspondence between the tubular neighborhood �1\�−1 and ∂�0×[−1, 1].
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Lemma 2.3 (compare [He], p.146). Any u ∈ C∞(�0, S2) admits an extension
Uu ∈ C∞(R4, S2) such that Uu ≡ (0, 0, 1) on R4 \ �1 and

∫
R4

|∇Uu|3 dx ≤ C�0

(
1 +

∫
�0

|∇u|3 dx

)

where C�0 depends only on �0.

Proof. Letting c1, c2, . . . denote constants depending only on �0, we first
choose, by Fubini’s Theorem, a number r ∈ (0, 1] so that

‖∇u‖L3(∂�−r ) ≤ c1‖∇u‖L3(�0) ,

and, for x ∈ �t with t ∈ [0, r ] define v(x) = u(x̄) where x̄ ∈ ∂�−t and
ρ(x̄) = ρ(x). Then

‖∇v‖L3(�r \�0) ≤ c2‖∇u‖L3(�0) ,

and
‖∇v‖L3(∂�r ) ≤ c3‖∇u‖L3(∂�−r ) .

By Sobolev embedding and the bound |v| ≤ 1, we have

‖v‖W 3/4,4(∂�r ) ≤ c4‖v‖W 1,3(∂�r ) ≤ c4
(
1 + ‖∇v‖L3(∂�r )

)
Since u

∣∣�−r is continuous, deg (v|∂�r ) = deg (u|∂�−r ) = 0, and the class

W = {
w ∈ W 1,4(�1 \ �r

)
: w = v on ∂�r , w ≡ (0, 0, 1) on ∂�1

}
is nonempty. Thus we may find w ∈ W of minimum 4-energy,∫

�1\�r

|∇w|4 dx ,

which is, by [HL2], bounded by

c4‖v‖4

W
3
4 ,4

(∂�r )

.

Hölder’s inequality then gives

‖∇w‖L3(�1\�r ) ≤ c6‖∇w‖L4(�1\�r ) .

Letting 


ζ = u on �0

ζ = v on �r \ �0

ζ = w on �1 \ �r

ζ = (0, 0, 1) on R4 \ �1
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we deduce from the above inequalities that

‖ζ‖L3(R4) ≤
(

1 + c2 + c6c
1
4
5 c4c3c1

)
‖∇u‖L3(�0) + c6c

1
4
5 c3 .

Qualitatively, we deduce from the interior and boundary regularity of 4-energy
minimizers [HL2] that ζ is continuous on R4. Letting ζε denote a standard
R4-valued smoothing of ζ on the closed region �1 \ �0, preserving boundary
data, so that, in particular,

‖∇ζε‖L3 → ‖∇ζ‖L3 and |ζε | → 1 uniformly as ε → 0 ,

we may complete the proof by taking Uu =ζε/|ζe| for ε sufficiently small.
For the remainder of the paper, we will, for simplicity, restrict to mappings

that are constant outside of a fixed compact set.
For map u ∈ W 1,3(R4, S2), constant near infinity, one again has the notion of

a Coulomb gauge h̃ ∈ W 1,1 defined by (2.1) which may alternately be obtained
using the strong W 1,3 approximation [Be1] of u by maps smooth away from a
finite singuar set and homogeneous near each singularity. The complement of
each finite set being simply-connected, we readily obtain corresponding Coulomb
lifts that converge strongly in W 1,12/5 to a Coulomb lift ũ satisfying (2.2) a.e.
Our main estimate for Coulomb lifts on R4 is the following

Lemma 2.4.Suppose u ∈ W 1,3(R4, S2), and u is constant outside of a compact
set K ⊂ R4. Then there is a constant cK depending only on K so that any Coulomb
lift ũ of u satisfies

‖∇ũ‖
L

12
5 (R4)

≤ cK

(
1 +

∫
|∇u|3 dx

)2
3
,

‖∇(ũ|h)‖L3(h) ≤ cK

(
1+

∫
h
|∇u|3 dH3

)2
3

for each h ∈ H,

M
(
Gũ#[h�K ]

) ≤ cK

(
1 +

∫
h
|∇u|3 dH3

)4
3

for each h ∈ H,

∫ ∞

−∞

(∫
h(v,t)

|∇(ũ|h(v, t)
)|3 dH3

) 1
2

dt ≤ cK

(
1 +

∫
|∇u|3 dx

)
for each v ∈ S3,

∫ ∞

−∞
M (Gũ#[h(v, t)�K ] )

3
4 dt ≤ cK

(
1 +

∫
|∇u|3 dx

)
for each v ∈ S3 .

Proof. By Lemma 2.1, Sobolev embedding in R4, and Hölder’s inequality,

‖∇ũ‖L12/5(R4) ≤
∥∥∥∥∥1

2
η̃

∥∥∥∥∥
L12/5

+ ‖∇u‖L12/5 ≤ c1‖∇η̃‖L3/2 + c2‖∇u‖L3

= c1‖u#ω
S2‖L3/2 + c2‖∇u‖L3 ≤ c3

(
1 +

∫
|∇u|3 dx

)2/3

,

for some constants c1, c2, c3, depending only on K .
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Similarly Lemma 2.1, Sobolev embedding in the 3 dimensional h, and
Hölder’s inequality imply

‖∇ũ‖L3(h) ≤
∥∥∥∥∥1

2
η̃

∥∥∥∥∥
L3(h)

+ ‖∇u‖L3(h) ≤ c4‖∇η̃‖L3/2(h) + ‖∇u‖L3(h)

= c4‖u#ω
S2‖L3/2(h) + ‖∇u‖L3(h) ≤ c5

(
1 +

∫
h
|∇u|3 dH3

)2/3

,

for some constants c4, c5, depending only on K .
To prove the third conclusion, observe first that

M
(
Gũ#[h�K ]

) = H3(Gũ(h ∩ K )
) =

∫
h∩K

J Gũ|h dH3,

where J Gũ|h is the 3 dimensional Jacobian ‖�3 DGũ|h‖. Also, in the expansion
of |J Gũ|h|2 on h, the only term involving the square of the product of 3
derivatives of ũ is the square of

|J (ũ|h)| ≤ |(J ũ)| = |ũ#ω
S3 | = |ũ#(α ∧ �#ω

S2
)|

= |ũ#α ∧ ũ#�#ω
S2 | = 1

2
|η̃ ∧ u#ω

S2 | .
Thus we may use Sobolev embedding in h and Hölder’s inequality several times
to estimate

M
(
Gũ#[h�K ]

) ≤ c6

∫
h∩K

( |η̃ ∧ u#ω
S2 | + |∇ũ|2 + |∇ũ| + 1

)
dH3

≤ c6

(∫
h∩K

|η̃|3 dH3
) 1

3
(∫

h∩K
|u#ω

S2 |32 dH3
)2

3 + c7 +c8

∫
h∩K

|∇ũ|2dH3

≤ c6

(∫
h∩K

|∇η̃| 3
2 dH3

) 2
3
(∫

h∩K
|u#ω

S2 | 3
2 dH3

)2
3+ c7+c8

∫
h∩K

(|η̃|2+|∇u|2)dH3

≤ c6

(∫
h∩K

|u#ω
S2 |32 dH3

)4
3+c9+c10

(∫
h∩K

|η̃|3dH3
)2

3 +c11

(∫
h∩K

|∇u|3dH3
)1

3

≤ c6

(∫
h∩K

|∇u|3dH3
)4

3 +c12+c13

(∫
h∩K

|∇η̃|32 dH3
)4

3+c11

(∫
h∩K

|∇u|3dH3
)4

3

≤ c14

(∫
h∩K

|∇u|3dH3
)4

3 + c12 ,

where c6, . . . , c14 depend only on K .
Finally, taking h = h(v, t), raising the second and third inequalities to the

3/2 and 4/3 powers, integrating with respect to t , and noting that∫ ∞

− ∞

∫
h(v,t)∩K

|∇u|3dH3dt =
∫

K
|∇u|3dx

gives the fourth and fifth conclusions.
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Example 2.5. One cannot improve 12/5 to 3 in the above estimate for ũ.
In fact, we here describe a sequence of smooth maps un ∈ C∞(R4, S2), constant
outside of B1, so that

sup
n

∫
|∇un|3 dx < ∞ ,

but

lim
n→∞ inf

{∫
|∇ũn|3 dx : ũn is a Hopf lift of un

}
= ∞ .

We obtain the un by a suitable dipole construction. First consider in R4

the oriented intervals

Ij =
[(

0, 0, 0,
1

2 j

)
,

(
0, 0,

1

2 j2 ,
1

2 j

)]

for j = 1, 2, . . . There is a map un ∈ C∞(R4, S2) which is a constant (0, 0, 1)

outside of small disjoint closed tubular neighborhoods of I1, I2, . . . , In and
which, has on each 3 dimensional perpendicular slice Dt

j of the neighborhood
of Ij , Hopf degree j (as a map from (Dt

j , ∂ Dt
j ) to (S2, {(0, 0, 1)})), for j =

1, 2, . . . , n. Using the crucial observation of [R1] that

inf
{∫

S3
|∇g|2 dH3 : g ∈ C∞(S3, S2), Hopf deg g = j

}
≤ cj

3
4 ,

we see that we may obtain such a un with 3 energies uniformly bounded

∫
R4

|∇un|3dx ≤ c
n∑

j=1

j
3
4 length (Ij ) ≤ c

∞∑
j=1

j
3
4

(
1

2 j2

)
< ∞.

On the other hand, for any smooth Hopf lift ũn of un the restriction of
ũn to each 3 dimensional slice Dt

j has (as in Section 2) topological degree j ,
when viewed as a map from (Dt

j , ∂ Dt
j ) to (S2, {(0, 0, 1)}). Thus we have the

lower energy bound [R1] on each slice∫
Dt

j

|∇(ũn|Dt
j )|3 dH3 ≥ 3

3
2 4π2 j ,

Integrating over all such slices we find that

∫
R4

|∇ũn|3dx ≥ 3
3
2 4π2

n∑
j=1

j · length(Ij ) ≥ 3
3
2 4π2

n∑
j=1

j
(

1

2 j2

)
→ ∞ as n → ∞.

Similarly, concerning the graphs Gũn (R4) ⊂ R4×S3, we find that, for each slice,

H3(Gũn (Dt
j )
) ≥

∫
S3

H0(Dt
j ∩ ũ−1

n {y}) dH3 y ≥ 4

3
π j ,
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and integrating over all the slices gives

H4(Gũn (B4)
) ≥ 4

3
π

n∑
j=1

j
(

1

2 j2

)
→ ∞ as n → ∞ ,

so that these graphs do not converge as Cartesian currents [GMS2].

Remark 2.6. For any fixed 3 dimensional oriented hyperplane h ⊂ R4 and
(not necessarily smooth) map ψ in W 1,3(h, S3), the graph of ψ , Gψ(h), is still
a countably 3 rectifiable subset of h × S3 whose approximate tangent planes
project onto h and are thus oriented by the orientation �h of h. We will use the
notation Gψ for the resulting locally rectifiable current defined by

Gψ(φ) =
∫

Gψ(h)

< �3 DGψ(x)�h, φ(x, y) > dH3(x, y)

for φ ∈ D3(R4 × S3). Note that Gψ = Gψ#h in case ψ is smooth. Inasmuch
as smooth maps are strongly dense in W 1,3(h, S3) [Be1], say ψ = limε→0 ψε

with ψε ∈ W 1,3(h, S3) ∩ C∞, we readily verify that

∂Gψ = lim
ε→0

∂Gψε = lim
ε→0

∂Gψε#h = lim
ε→0

Gψε#∂h = 0 .

Similarly, for any Lipschitz domain � ⊂ R4 and ψ ∈ W 1,3(∂�, S3) one may
define Gψ and verify that ∂Gψ = 0.

For u ∈ W 1,3(R4, S2), constant near infinity, we infer from Lemma 2.4 that
the function sending

h ∈ H → Gũ|h ∈ R3,loc

is a scan which we denote Gũ .
This scan may be used to give another criteria [Z], [I1] for the strong W 1,3

approximability by smooth maps.

Lemma 2.7. A map u ∈ W 1,3(R4, S2), constant near ∞, is in the strong W 1,3

sequential closure of C∞(R4, S2) if and only if ∂Gũ = 0 for some lift ũ of u.

Proof. Suppose that un ∈ C∞(R4, S2) converges strongly in W 1,3 to u with
un ≡ (0, 0, 1) near infinity. Consider corresponding Coulomb gauges η̃n and
Coulomb lifts ũn with ũn ≡ (0, 0, 0, 1) near infinity. Passing to a subsequence,
we obtain from Lemma 2.4 a pointwise a.e. limit

ũ = lim
n→∞ ũn ∈ W 1,5/12(R4, S3) .

For all v ∈ S3, Fatou’s lemma and Fubini’s theorem,∫ ∞

−∞
lim inf
n→∞

∫
h(v,t)

|∇(un′ − u)|3 dH3 dt ≤ lim inf
n→∞

∫
R4

|∇(un′ − u)|3 dx = 0 ,
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then give, for a.e. t ∈ R, strong convergence in W 1,3
(
h(v, t)

)
of a subsequence

(depending on t) un′ |h(v, t) to u|h(v, t). Then the Coulomb gauges η̃n′ con-
verge strongly in W 1,1

(
h(v, t)

)
and the Coulomb lifts ũn′ converge strongly in

W 1,3
(
h(v, t)

)
. The graphs then converge weakly as currents

lim
n→∞ Gũn′#h(v, t) = lim

n→∞ Gũn′ |h(v,t) = Gũ|h(v,t) .

Slicing theory [F], 4.3, then gives, for almost all polyhedral domains U ⊂ R4,
the current convergence of Gũn′#∂[[U ]] to the rectifiable current

(
Gũ

)
∂U . We

thus deduce the vanishing of ∂[(Gũ)∂U ], (Gũ)∂U (q#ω
S3), and hence ∂Gũ .

The converse follows essentially from arguments of [Be1]. In the proof
of [Be1], Theorem 2 (with n=4, p = 3), the singularities of the approximating
map only arise in making a homogeneous extension on some 4 dimensional
cubes C where the 3 energy on ∂C is controlled. But now second condition
of the of ∂Gũ = 0 implies that the Hopf invariant on ∂C is zero so that one
may, with arbitrarily small extra energy, remove the singularity by modifying
this homogeneous extension in a very small ball about the center.

To effectively use Lemma 2.4 to get information about the span Gũ , we
require a new topology on R3, which we now describe.

3. – The de metric on R3

For any orthonormal frame e = (e1, e2, e3, e4) of R4, and P, Q ∈ R3,loc
with spt (P − Q) compact, we now define

de(P,Q)= inf


M(S)+

4∑
j=1

∫
M<T, pej , t >

3
4 dt : P−Q = S+∂T, S ∈R3, T∈R4


.

This should be compared to the flat distance where one uses instead the quantity
M(S) + M(T ) while noting that

M(T ) ≤
4∑

j=1

∫
M < T, pej , t > dt ≤ 4M(T ) .

Lemma 3.1. de is a metric on R3.

Proof. The function de clearly satisfies the conditions de(P, Q) = de(Q, P),
de(P, P) = 0, and the triangular inequality because (A + B)3/4 ≤ A3/4 + B3/4.

It remains to prove that the assumption

de(P, Q) = 0 implies P = Q.
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For this we first find Si ∈ R3 and Ti ∈ R4, so that

P − Q = Si + ∂TI

and

M(Si ) +
4∑

j=1

∫
M < Ti , pej , t >

3
4 dt → 0 as i → ∞ .

For each j ∈ {1, 2, 3, 4}, Fatou’s lemma implies that∫
lim inf

i→∞
M < Ti , pej , t >

3
4 dt = 0 .

Thus, for almost every t ∈ R, there is a subsequence i ′ (depending on j, t)
so that

M < Ti ′, pej , t >→ 0 as i ′ → ∞ .

Since M(P − Q − ∂Ti ′) → 0, we find from [F], 4.3 that, for such j, t , and any
2 form φ ∈ D2(R4 × S3),

< P − Q, pej , t > (φ)= lim
i ′→∞

<∂Ti ′, pej , t > (φ) =− lim
i ′→∞

∂ < Ti ′, pej , t >(φ)=0.

It follows that, for ‖P − Q‖ almost all z, the approximate tangent 3 plane Lz

associated with
−−−→
P − Q(z) has p(Lz) = 0. In fact, otherwise pej |Lz would have

rank one for some j ∈ {1, 2, 3, 4} which would, as in the proof of Lemma 1.1,
contradict the vanishing of < P − Q, pej , t > for a.e. t .

We deduce again, as in the proof of Lemma 1.1, that

P − Q =
∑
a∈A

ma[[a]] × [[S3]]

for some finite subset A of R4 and some nonzero integers ma .
If A �= ∅, we may fix one point b ∈ A, a positive δ ≤ 1 so that

Bδ(b) ∩ (A ∪ ∂BR) = {b} ,

and i sufficiently large so that

(*) M(Si ) +
4∑

j=1

∫
M < Ti , pej , t >

3
4 dt <

(
π2

8

) 3
4

δ cos
(

3π

8

)
.

Since
∫

S3 M < Si , q, v > dH3v ≤ M(Si ) by [F], 4.3 and < Si , q, v > is an
integer-multiplicity 0 chain for H3 almost all v ∈ S3, we first note that

V = {v ∈ S3 : < Si , q, v >= 0} = {v ∈ S3 : M < Si , q, v > < 1}
has H3(V ) ≥ π2 = 1/2H3(S3).
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For H3 almost all v ∈ V ,

−∂ < Ti , q, v >=< P − Q, q, v >=
∑
a∈A

ma[[(a, v)]] ,

and < Ti , q, v > contains an oriented integer-multiplicity curve 	v in R4 ×
{v} joining (b, v) to (av, v) for some point av ∈ (A \ {b}) ∪ ∂BR . Then the
corresponding direction

b − av

|b − av| · ιvejv ≤ cos
(

3π

8

)

for some integers ιv ∈ {−1, 1}, jv ∈ {1, 2, 3, 4}. The current pejv #	v is a nonzero
integer multiple of the projected interval Iv = pejv

(
[(b, v), (av, v)]

)
which has

length at least δ. So, using Fubini’s Theorem and [F],4.3, we see that, for H3

almost all v ∈ V and H1 almost all t ∈ Iv ,

M << Ti , pejv
, t >, q, v >= M << Ti , q, v > pejv

, t > ≥ 1 .

Now we simply chose ι ∈ {−1, 1} and j ∈ {1, 2, 3, 4} so that

W = {v ∈ V : ιv = ι and jv = j}

has H3(W ) ≥ 1/8H3(V ) ≥ π2/8. Then the interval I joining ej · b and
ej · b + ιvδ is contained in each Iv for all v ∈ W , and we may use [F],4.3 to
deduce that

4∑
j=1

∫
M < Ti , pej , t >

3
4 dt ≥

4∑
j=1

∫ (∫
W

M << Ti , pej , t >, q, v > dv

) 3
4

dt

=
∫

I

(∫
W

M << Ti , q, v > pev , t > dv

) 3
4

dt

≥ (
H3(W )

) 3
4 δ ≥

(
π2

8

) 3
4

δ ,

which contradicts (*). Thus, A = ∅, and P = Q.

As in [F], let N(T ) = M(T ) + M(∂T ) for a current T .

Lemma 3.2. For each R > 0, N is, with respect to the de metric, lower semi-
continuous on

RR = {P ∈ R3 : spt P ⊂ BR(0) × S3} .

For each � > 0, {P ∈ RR : N(P) ≤ �} is de sequentially compact.
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Proof. By the Federer-Fleming compactness Theorem [F], 4.2.16, any N

bounded sequence in RR has a subsequence Pi that is convergent to some
P ∈ RR in the F

BR (0)×S3 norm, that is, Pi − P = Si + ∂Ti of some rectifiable

currents Si , Ti with supports in BR(0) × S3 so that

M(Si ) + M(Ti ) → 0 as i → ∞ .

This flat convergence implies the weak (current) convergence of Pi to P and
∂ Pi to ∂ P so that

N(P) = M(P) + M(∂ P) ≤ lim inf
i→∞

M(Pi ) + lim inf
i→∞

M(∂ Pi )

≤ lim inf
i→∞

[
M(Pi ) + M(∂ Pi )

] = lim inf
i→∞

N(Pi ) .

But the flat convergence also implies the de convergence of Pi to P because
Hölder’s inequality and [F], 4.3 show that, for each j ∈ {1, 2, 3, 4},

∫
M < Ti , pej , t >

3
4 dt ≤

(∫
M < Ti , pej , t > dt

) 3
4

(2R)
1
4

≤ M(Ti )
3
4 (2R)

1
4 → 0 as i → ∞ .

This establishes the desired compactness.
Moreover, to show the lower-semicontinuity that N(P) ≤ lim infi→∞ N(Pi )

for any de convergent sequence Pi → P in RR , we may assume first that
the righthand side is finite and second, by passing to a subsequence that
limi→∞ N(Pi ) < ∞. Then as above we find the flat (and hence weak current)
convergence of a subsequence Pi ′ → Q. But then this implies de convergence
so that Q = P and

N(P) = N(Q) ≤ lim inf
i→∞

N(Pi ′) ≤ lim inf
i→∞

N(Pi ) .

4. – Energy concentration associated with bubbles in 3 dimensions

For a general W 1,3 weakly convergent sequences of maps in C∞(R3, S3),
the graphs may subconverge to a current that includes not only the graph of
the limit but additional terms, called “bubbles”. These are studied in the work
[GMS2] of Giaquinta, Modica, and Souček on Cartesian Currents, which shows
the following
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Lemma 4.1 (3d Bubbling). For any sequence of maps ψn ∈ C∞(R3, S3) which
are constant (0, 0, 0, 1) outside of a fixed bounded subset of R3 and have a uniform
3-energy bound

sup
n

∫
R3

|∇ψn|3 dH3 < ∞ ,

the oriented graphs Gψn locally have uniformly bounded masses, and a subsequence
of them converges weakly to a locally rectifiable cycle. Assuming that the mappings
ψn ⇀ ψ weakly in W 1,3, any such limiting current has the form

Gψ +
∑
a∈A

m(a)
(
[[a]] × [[S3]]

)
for some finite subset A of R3 and nonzero integers m(a) for a ∈ A. Moreover,

lim
r→0

lim inf
n→∞

∫
Br (a)

|∇ψn|3 dx ≥ 2 · 3
3
2 π2|m(a)|

for all a ∈ A.

Thus the finite supporting set A of the “bubbles” is contained in the 3-
energy concentration set,{

a ∈ R3 : lim
r→0

lim inf
n→∞

∫
Br (a)

|∇ψn|3 dx > 0
}

,

of the sequence ψn .
We are here interested in these phenomena for Hopf lifts of given maps

from R3 or from R4 to S2. Of course, each map ψn : h → S3 above can be
viewed as a Hopf lift of the map

� ◦ ψn : h → S2 .

It is important that the supporting set A of bubbles for the sequence ψn is
actually contained in the 3-energy concentration set of this “downstairs” sequence
� ◦ ψn . Specifically, under the hypotheses of Lemma 4.1,

lim
r→0

lim inf
n→∞

∫
h∩Br (a)

|∇(� ◦ ψn)|3 dH3 ≥ ε0

for all a ∈ A and some absolute positive constant ε0. This will follow from
Theorem 4.2 below.

The reason we will need this is that, in our application, we start with a
3-energy bounded sequence of maps to S2 defined on R4 rather than R3. This
sequence may unfortunately not have a single subsequence with Hopf lifts of
bounded 3 energy on almost all hyperplanes. In fact, any single subsequence
may itself fail to have bounded 3 energy on almost all hyperplanes, despite
Fatou’s lemma which only guarantees bounded energy subsequences depending
on the hyperplane. Nevertheless, we will find, in Section 6, a single subsequence
of graphs of Coulomb lifts that is de convergent on almost all hyperplanes, thus
giving the desired limiting scan. The next theorem, which is crucial for proving
the rectifiability of this limit in Section 7, shows that the appearence of a bubble
under this weak de convergence (even in the absence of energy or mass bounds)
is enough to guarantee energy concentration.
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Theorem 4.2. Suppose h is a fixed hyperplane in R4 and un = � ◦ ũn where
ũn ∈ C∞(h, S3) and the ũn are constant (0, 0, 0, 1) outside of some fixed bounded
subset of h. If

(de) lim
n→∞ Gũn = Gũ +

∑
a∈A

m(a)
(
[[a]] × [[S3]]

)

for some ũ ∈ W 1,3(h, S3), some finite subset A of h, and some nonzero integers
m(a), then

lim
r→0

lim inf
n→∞

∫
h∩Br (a)

|∇un|3 dH3 ≥ ε0

for all a ∈ A for some absolute positive constant ε0.

Proof. We begin by deriving the desired constant ε0.

First, on the unit 3 dimensional ball B = h ∩ B1(0), any smooth map
v : B → S2 has a local Coulomb lift v̂ : B → S3 obtained from an associated
gauge (as in Section 2) η̂ which satisfies


dη̂ = v̂#ω

S2 on B

d∗η̂ = 0 on B

ι#∂B
η̂ = 0 where ι∂Bis the inclusion map of∂B.

Arguing as in Section 2.2, using a Poincaré instead of Sobolev inequality, we
find constants c1, c2 so that

‖∇v̂‖L3(B) ≤
∥∥∥∥∥1

2
η̂

∥∥∥∥∥
L3(B)

+ ‖∇v‖L3(B)

≤ c1‖∇η̂‖
L

3
2 (B)

+ ‖∇v‖L3(B)

= c1‖v#ω
S2‖

L
3
2 (B)

+ ‖∇v‖L3(B) ≤ c2‖∇v‖L3(B)

assuming
∫

B
|∇v|3 dH3 ≤ 1.

Second, since �−1{y} is a great circle in S3 for every y ∈ S2, we readily
find a positive constant ρ0 so that

(4.1) H3(�−1[Bρ0(y) ∩ S2]) < π2 = 1

2
H3(S3)

Third, on any convex 2-dimensional region � ⊂ R2 with B2
1/8 ⊂ � ⊂ B2

4,
a function f ∈ W 1,3(�, R4) is, by Sobolev embedding, Hölder continuous, and
there is a positive constant ε1 small enough so that

(4.2)
∫

�

|∇ f |3 dH2 ≤ ε1 implies f
(
�) ⊂ Bρ0/3(y)
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for some y ∈ R4. Now we choose

(4.3) ε0 = min

{
1,

1

6
ε1,

2π2

4(c3
2 + 6)

}
.

Assuming for contradiction that the lemma is false with this ε0 , we find (by
passing to a subsequence without changing notation) ũn, ũ, A, m(a) satisfying
the hypothesis, a point a ∈ A, and a positive r so that∫

h∩Br (a)

|∇un|3 dH3 < ε0

for all n. Since A is discrete and ũ ∈ W 1,3, we may also assume that r is
small enough to insure that A ∩ Br (a) = {a} and∫

h∩Br (a)

|∇ũ|3 dH3 < ε0 .

For convenience, we now rescale from Br (a) to B ≡ h ∩ B1(0) by defining

vn(x) = un(a + r x) , ṽn(x) = ũn(a + r x) , ṽ(x) = ũ(a + r x) ,

and noting that

∫
B

|∇vn|3 dH3 =
∫

h∩Br (a)

|∇un|3 dH3 ≤ ε0 ,(4.4)

∫
B

|∇ṽ|3 dH3 =
∫

h∩Br (a)

|∇ũ|3 dH3 ≤ ε0 ,(4.5)

While the given sequence of lifts ṽn of vn may have unbounded 3-energy on
the ball B, the local Coulomb lifts v̂n described above satisfy

(4.6)
∫

B

|∇v̂n|3 dH3 ≤ c3
2

∫
B

|∇vn|3 dH3 ≤ c3
2ε0 .

We may homologically connect the graphs of the two lifts v̂n and ṽn|B
because they are homotopic through lifts. Specifically, each circle fiber �−1{y}
of the Hopf map is oriented (by the 1 form α). Let 	(·, 0) : [0, 1] → h × S3

be the unique shortest constant-speed, positively-oriented curve in the circle
{0}×�−1{vn(0)} from {(0, v̂n(0)

)} to {(0, ṽn(0)
)}. By the simple- connectedness

of B, there is a unique smooth extension 	 : [0, 1]×B → h ×S3 so that, for all
x ∈ B, 	(·, x) is a constant-speed, positively-oriented curve in {x}×�−1{vn(x)}
from {(x, v̂n(x)

)} to {(x, ṽn(x)
)}. The current T̂ ≡ 	#

(
[[0, 1]] × [[B]]

)
then

gives the homology

(4.7) ∂ T̂n = Gṽn |B − Gv̂n − 	#
(
[[0, 1]] × ∂[[B]]

)
,
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with the last term having support in p−1(∂B). This current may have high
multiplicity at various points, and we have no control on the M(T̂ n) as n → ∞.

Next, using the de convergence, we may write

(4.8) Gṽ +
∑
b∈A

m(b)

([[
b − a

r

]]
× [[S3]]

)
− Gṽn = S̃n + ∂ T̃n ,

for some S̃n ∈ R3 and T̃n ∈ R4 such that

M(S̃n) +
4∑

j=1

∫
M < T̃n, pej , t >

3
4 dt → 0 as n → ∞ .

We now fix an integer n sufficiently large to guarantee that

(4.9) M(S̃n) +
4∑

j=1

∫
M < T̃n, pej , t >

3
4 dt ≤ ε0 .

To use this estimate we need to choose polyhedral regions whose boundaries
lie in such hyperplanes. For our fixed frame e = (e1, e2, e3, e4) of R4, we note
that the angle between the hyperplane h and three of the ei , say e1, e2, e3, is
at most π/4. So using the norm

µ(x) = max{e1 · x, e2 · x, e3 · x}

on h, we find that, for 1/2 ≤ t ≤ 1, the open parallellopiped �t ≡ {x ∈ h :
µ(x) < t} has

h ∩ B 1
8
(0) ⊂ �t ⊂ h ∩ B4(0) .

Each of the six 2 dimensional faces of ∂�t ,

{x ∈ ∂�t : x · ej = ±t}

similarly satisfy this interior-exterior ball property.
Since p−1

(
∂�t

) ⊂ ∪3
j=1 p−1

ej
{−t, t} and

∫ 1

0


∫

∂�t

|∇vn|3 dH2+
4∑

j=1

(
M < T̃n, pej , −t >

3
4 +M < T̃n, pej , t >

3
4

) dt ≤ 3ε0

by (4.4) and (4.9), we may now fix a number t ∈ [ 1/2, 1] so that

(4.10)
∫

∂�t

|∇vn|3 dH2 ≤ 6ε0 ,
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and the slice R̃n ≡< T̃n, µ ◦ p, t > has

(4.11) M(R̃n) ≤ 6ε0 .

Also since T̂n is constructed by a homotopy through liftings, one deduces from
(4.2), (4.3), and (4.10) that the other slice R̂n ≡< T̂n, µ ◦ p, t > has

(4.12) spt R̂n ⊂ ∂�t × �−1vn(∂�t) ⊂ ∂�t × �−1(S2 ∩ Bρ0(y)
)

for some y ∈ S2.
Combining (4.7) and (4.8) with usual slicing formulas, we now have the

equation of rectifiable currents

(4.13)
∂
(
T̃n�p−1�t + T̂n�p−1�t

) =
= Gṽ|�t + m(a)

(
[[0]] × [[S3]]

)− Gv̂n |�t − S̃n�p−1�t + R̃n + R̂n .

We may apply q# to project onto S3 and then restrict to the region,

(4.14) U ≡ S3 \ �−1(S2 ∩ Bρ0(y)
)
.

and compute the resulting masses. Checking each term using (4.1), (4.3), (4.5),
(4.4), (4.6), (4.9), (4.11), (4.12), and (4.14),

Mq#∂
(
T̃n�p−1�t + T̂n�p−1�t

)
�U ≤ M

(
∂q# (4 dimensional current)

) = 0,

M
(
q#m(a)

(
[[0]] × [[S3]]

)
�U

) = |m(a)|H3(U ) ≥ H3(U ) > π2 ,

M(q#Gṽ|�t �U ) ≤
∫

B

|∇ṽ|3 dH3 ≤ ε0 ≤ π2

24
,

M(q#Gv̂n |�t �U ) ≤
∫

B

|∇v̂n|3 dH3 ≤ c3
2ε0 ≤ π2

4
,

M
(
q#(S̃n�p−1�t )�U

) ≤ M(S̃n) ≤ ε0 ≤ π2

24
,

M
(
q#(R̃n)�U

) ≤ M(R̃n) ≤ 6ε0 ≤ π2

4
,

M
(
q# R̂n�U

) = 0

which gives the desired contradiction and completes the proof.
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5. – A fractional maximal function estimate for the scan of a smooth map

In this section we assume w is a smooth map from R4 to S3 which is
constant outside of a fixed ball BR = BR(0). We first note that the correspond-
ing scan

Gw# : H → R3 is continuous, and hence, measurable,

with respect to the de metric on R3. In fact, for oriented hyperplanes h, k ∈ H ,
we may use a geodesic path from h to k in H = S3 × R to define a 4
dimensional locally rectifiable current T ∈ R4 with ∂T = h−k and M(T �BR) ≤
C R3|h − k|, hence,

Gw#h − Gw#k = ∂Gw#T

M(Gw#(T �BR)) ≤ C(w)R3|h − k| .
Thus Gw# is a continuous map from H into R3, with the locally flat, and hence
(as in Section 3), de topology.

Theorem 5.1. Suppose that w ∈ C∞(R4, S3), and w is constant outside of BR.
If e = (e1, e2, e3, e4) is an orthonormal frame for R4, 0 < α < 1, v ∈ S3, and I is
a subinterval of [−R, R], then the fractional maximal function

MI (t) ≡ esssup
t �=s∈I

de
(
Gw#h(v, s), Gw#h(v, t)

)
|s − t |α for a.e. : t ∈ I ,

satisfies the weak-type measure estimate

∣∣{t ∈ I : M
1
α
I (t) > λ}∣∣ ≤ λ−1µw(I )

where

µw(I ) = α−15
1
α

4∑
j=1

(∫
M
(
Gw#[h(ej , τ )�BR ∩ π−1

v (I )]
)α dτ

) 1
α

.

Remark 5.2. Note that the quantity µw satisfies the super-additivity relation

µw(I ) + µw(J ) ≤ µw(K )

whenever I, J are nonoverlapping subintervals of an interval K in [−R, R].

Proof of Theorem 5.1. For numbers s, t ∈ [−R, R], let st denote the
closed interval joining s and t and observe that the 4 dimensional locally
rectifiable current

Ts,t = Gw#[[π−1
v

(
st
)
]]
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has
Gw#h(v, s) − Gw#h(v, t) = ±∂Ts,t

so that we may estimate

de
(
Gw#h(v, s) , Gw#h(v, t)

) ≤
4∑

j=1

∫
M
(

< Ts,t , pej , τ > �p−1(BR)
)α dτ

=
4∑

j=1

∫
M
(
Gw#[h(ej , τ )�BR ∩ π−1

v ( st )]
)αdτ .

We can now use a covering argument to estimate the measure of

Eλ ≡ {t ∈ I : M1/α
I (t) > λ} .

For each t ∈ Eλ, we may choose a number st �= t in I so that

λα |t − st |α < de
(
Gw#h(st , v) , Gw#h(v, t)

)
≤

4∑
j=1

∫
M
(
Gw#[h(ej , τ )�BR ∩ π−1

v ( st t )]
)αdτ .

The (1 dimensional) Besicovitch covering lemma allows us to find, for i =
1, . . . , 5 and k = 1, 2, . . . , points ti,k ∈ Eλ with corresponding closed intervals

Ii,k = sti,k ti,k

that altogether cover Eλ,

Eλ ⊂ ∪5
i=1 ∪∞

k=1 Ii,k ,

while each of the five separate families

{Ii,1, Ii,2, . . . } ,

corresponding to i ∈ {1, . . . , 5}, consists of disjoint intervals. In particular,

|Eλ| ≤
5∑

i=1

∞∑
k=1

ri,k

where ri,k = |ti,k − sti,k |.
For nonnegative Ai,k we have the elementary estimate

∑
i,k

r1−α
i,k Ai,k ≤


∑

i,k

ri,k




1−α 
∑

i,k

Ai,k


 .
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One may check this by reducing to the case
∑

i,k Ai,k = 1 and noting that, on
the simplex

{
(x1,1, x1,2, x1,3, x1,4, x1,5, x2,1, x2,2, . . . ) ∈ R∞ : xi,k ≥ 0,

5∑
i=1

∞∑
k=1

xi,k = 1

}
,

the linear function
∑

i,k r1−α
i,k xi,k is bounded by the number

(∑
i,k ri,k

)1−α be-
cause it is trivially bounded by this number at all the vertices (1, 0, . . . ),
(0, 1, 0, . . . ), . . .

Now taking

Ai,k =
4∑

j=1

∫
M
(
Gw#[h(ej , τ )�BR ∩ π−1

v (Ii,k)]
)αdτ ,

we see that Ai,k ≥ λαrα
i,k by the choice of sti,k , and, using the disjointness of

each {Ii,1, Ii,2, . . . }, we conclude that

λα|Eλ|α ≤ λα

(∑
i,k

ri,k

)α

=
(∑

i,k

ri,k

)α−1(∑
i,k

ri,kλ
α

)

≤
(∑

i,k

ri,k

)α−1 ∑
i,k

r1−α
i,k Ai,k ≤

∑
i,k

Ai,k

=
5∑

i=1

∞∑
k=1

4∑
j=1

∫
M
(
Gw#[h(ej , τ )�BR]�p−1

v (Ii,k)
)αdτ

≤ 5
4∑

j=1

∫
M
(
Gw#[h(ej , τ )�BR]�p−1

v (I )
)αdτ ,

and then raise to the 1/α power to complete the proof.

6. – Limits of scans of Coulomb lifts of weakly convergent smooth maps

Here we will prove our main existence theorem by using the estimates of
Section 2-5 in the general compactness lemma of the appendix Section 9.

Theorem 6.1. Suppose un ∈ C∞(R4, S2), un ≡ (0, 0, 1) on R4 \ B4
2, and

sup
∫

|∇un|3 dx < ∞ .



CONNECTING TOPOLOGICAL HOPF SINGULARITIES 321

If ũn : R4 → S3 is a Coulomb lifting of un as in Section 2, then there is a subsequence
n′ of n, a pointwise a.e. limit

ũ = lim
n→∞ ũn′ ∈ W 1, 5

12 (R4, S3) ,

and a scan cycle S so that, for all v ∈ S3,

S
(
h(v, t)

) = (dε) lim
n→∞ Gũn′#h(v, t)

for almost all t ∈ R.

Proof. By Lemma 2.4, we may pass to a subsequence, without changing
notations, to get weak convergence in W 1, 12/5(R4, S3) of the Coulomb lifts

ũn ⇀ ũ ∈ W 1, 12
5 (R4, S3) .

This sequence converges pointwise a.e. on R4, and the limit ũ is a Hopf lift of

u ≡ � ◦ ũ ∈ W 1,3(R4, S2) .

Turning now to the corresponding scans, we proceed in two steps.

Step I. Convergence a.e. on one family of parallel hyperplanes.

Here we will show that for each fixed direction v ∈ S3, there is a a
subsequence nv(i) (depending on v) so that, for almost all t ∈ R, each sequence

Gũnv(i)#h(v, t)

is de convergent as i → ∞.

For this, we apply the Compactness Theorem 9.1 of the Appendix, with

α = 3

4
,

X = [−2, 2] ,

Y = {P ∈ R3 : ∂ P = 0, spt P ⊂ B2 × S3} ,

distY = de ,

N (P) = N(P)
3
4 = M(P)

3
4 ,

fn(t) = Gũn#
[
h(v, t)�B2

]
.

µn(I ) = 4

3
· 5

4
3

4∑
j=1

(∫
M
(
Gũn#[h(ej , τ )�B2 ∩ π−1

v (I )]
) 3

4 dτ

) 4
3

.
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We have in hand all the necessary hypotheses. Note that the de lower semi-
continuity of N and de sequential compactness of N bounded sets is provided
by Lemma 3.2 while the uniform integral bound of M

(
Gũn#

[
h(v, t)�B2

])3/4 is
given by Lemma 2.4. We thus conclude the de convergence of a subsequence
(depending on v) of Gũn#h(v, t) for almost every t ∈ R, and Step I is complete.

Step II. Convergence at a.e. coordinate hyperplane is sufficient.

We first apply Step I four times with v equaling

(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)

to find a subsequence n′ so that, for almost all s ∈ R, one has the de conver-
gences

lim
n→∞ Gũn′#h1

s = P1
s , . . . , lim

n→∞ Gũn′#h4
s = P4

s ,

at the coordinate hyperplanes

h1
s ≡ h

(
(1, 0, 0, 0), s

)
, . . . , h4

s ≡ h
(
(0, 0, 0, 1), s

)
.

It only remains to show that for any other direction

v ∈ S3 \ {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}

this convergence automatically implies de convergence of Gũn′#h(v, t) for almost
every t ∈ R (with the same subsequence n′).

Thanks to Step I, any subsequence of Gũn′#h(·, v) contains a subsequence,
that is de convergent a.e. on R. It thus suffices to show that any subsequence
of Gũn′#h(·, v) contains a subsequence, having pointwise a.e. de limit P(·) that
is uniquely determined by the currents Pi

s already obtained from the coordi-
nate hyperplanes.

By Fubini’s theorem, the exceptional set

Z ≡ {
t ∈ R : H3{x ∈ h(v, t) : lim

n→∞ ũn′(x) �= ũ(x)} > 0
}

has measure zero. Moreover, Lemma 2.4 and Fatou’s lemma imply that

∫ ∞

− ∞
lim inf
n→∞

(∫
h(v,t)

|∇(ũn′ |h(v, t)
)|3 dH3) 1

2 dt ≤ sup
n

c
(
1 +

∫
|∇un′ |3 dx

)

so that the set

Z̃ ≡ {t ∈ R : lim inf
n→∞

∫
h(v,t)

|∇(ũn′ |h(v, t)
)|3 dH3v = ∞}

also has measure zero.
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Let P(·) be any pointwise a.e. de limit of a subsequence of Gũn′#h(·, v).

For t ∈ R \ (Z ∪ Z̃), we see that the limiting map ũ | h(v, t) is a weak W 1,3

limit of some subsequence of maps with bounded 3-energy while the limiting
current P(t) is, by Lemma 2.4, the weak limit of some subsequence of locally
M bounded smooth graphs. Thus, the limiting map has finite 3-energy,∫

h(v,t)
|∇(ũ | h(v, t)

)|3 dH3 < ∞ ,

and, by Lemma 4.1, the limiting current has the form

P(t) = Gũ|h(v,t) +
∑

a∈h(v,t)

mv,t (a)
(
[[a]] × [[S3]]

)

for an integer-valued function mv,t supported in some finite subset of h(v, t).
We now only need to show how, for almost all t , all the integer multiplicities
mv,t (a), for a ∈ h(v, t), are uniquely determined by our coordinate hyperplane
currents Pi

s .
This will be accomplished by using, for each a ∈ h(v, t) and almost all

r > 0, the open coordinate cube

Qr (a) ≡
4∏

i=1

(ai − r, ai + r) ,

and looking at the limit of the graph of the restriction of ũn′ to the boundary
of the half-cube

Qv
r (a) ≡ {x ∈ Qr (a) : x · v > t} .

Since a · v = t , one face of ∂Qv
r (a) lies in the hyperplane h(v, t) under

present consideration while the others lie in the 8 coordinate hyperplanes
hi

a1−r , hi
ai +r , . . . , hi

a4−r , hi
a4+r . The corresponding equation of currents is

∂[[Qv
r (a)]] = σh(v, t)�Qr (a) +

4∑
i=1

(
hi

ai +r − hi
ai −r

)
�{x ∈ ∂Qv

r (a) : x · v > t}

where σ = sign (t − v · a).
As above, we have, for a.e. r > 0, pointwise a.e. convergence of ũn′ to ũ

on the hyperplanes hi
ai ±r as well as

lim inf
n→∞

∫
hi

ai ±r

|∇(ũn′ |hi
ai ±r

)|3 dH3v < ∞

for i = 1, 2, 3, 4. As before, we deduce that, for a.e. r > 0, each limiting
map ũ |hi

ai ±r is a weak W 1,3 limit of some subsequence of maps with bounded
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3-energy. Also by Lemma 2.4, for a.e. r > 0, any de limit of a subsequence
of Gũn′#hi

ai ±r the weak current limit of some locally M bounded subsequence.
Next we recall one relevant consequence of slicing [F], 4.3.1. If h is

a hyperplane and n∗ is a subsequence of n such that the currents Gũn∗#h
are locally mass bounded and converge weakly to a current T , then, for any
direction v∗ ∈ S3, not perpendicular to h, one has, for a.e. s > 0, the current
convergence of the restrictions

Gũ
n# #

(
h�{x : x · v∗ > s}) to T �{(x, y) : x · v∗ > s} .

Consider now any two subsequences n′′ and n′′′ of n′. Passing to subse-
quences of these, we may assume, by Lemma 4.1, that

lim
n→∞ Gũn′′#h(v, t) = Gũ|h(v,t) +

∑
a∈h(v,t)

m′′(a)[[a]] × [[S3]]

lim
n→∞ Gũn′′′#h(v, t) = Gũ|h(v,t) +

∑
a∈h(v,t)

m′′′(a)[[a]] × [[S3]]

for some integer-valued functions m′′ and m′′′ supported in finite subsets of
h(v, t). We now want to show that m′′(a) = m′′′(a) for each point a ∈ h(v, t).
For this, first choose ra small enough so that

Qra (a) ∩ (spt m′′ ∪ spt : m′′′) ⊂ {a} .

The slicing remark implies that, for almost every t ∈ R, we may, for almost every
0 < r < ra , pass to subsequences, without changing notations, to insure that

lim
n→∞ Gũn′′#

(
h(v, t)�Qr (a)

) = Gũ|h(v,t)�p−1Qr (a) + m′′(a)[[a]] × [[S3]]

lim
n→∞ Gũn′′′#

(
h(v, t)�Qr (a)

) = Gũ|h(v,t)�p−1Qr (a) + m′′′(a)[[a]] × [[S3]] .

Similarly, cutting by {x : x · v > t}, we see that the the two current limits

lim
n→∞ Gũn′′#

(
∂[[Qv

r (a)]]�{x : x · v > t}) ,

lim
n→∞ Gũn′′′#

(
∂[[Qv

r (a)]]�{x : x · v > t})
exist and equal the same current

Pr (a) ≡
4∑

i=1

(
Pi

ai +r − Pi
ai −r

)
�{(x, y) : x ∈ ∂Qv

r (a), x · v > t}

because of the uniqueness of the 8 coordinate hyperplane limits Pi
ai ±r .
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Finally concerning the total boundary, one has, by the smoothness of ũn

on Qv
r (a), that

Gũn#∂[[Qv
r (a)]]

(
q#ω

S3
) = q#∂Gũn#[[Qv

r (a)]]
(
ω

S3
)

= ∂q#Gũn#[[Qv
r (a)]]

(
ω

S3
) = 0

because q#Gũn#[[Qv
r (a)]] is a 4 dimensional current in S3. Thus,

2π2m′′(a) + σ
(
Gũ|h(v,t)�p−1∂Qv

r (a)
)(

q#ω
S3
)+ Pr (a)

(
q#ω

S3
)

= lim
n→∞ Gũn′′#

(
∂[[Qv

r (a)]]�h(v, t) + ∂[[Qv
r (a)]]�{x : x · v > t})(q#ω

S3
)

= lim
n→∞ Gũn′′#∂[[Qv

r (a)]]
(
q#ω

S3
)

= lim
n→∞ 0

= lim
n→∞ Gũn′′′#∂[[Qv

r (a)]]
(
q#ω

S3
)

= lim
n→∞ Gũn′′′#

(
∂[[Qv

r (a)]]�h(v, t) + ∂[[Qv
r (a)]]�{x : x · v > t})(q#ω

S3
)

= 2π2m′′′(a) + σ
(
Gũ|h(v,t)�p−1∂Qv

r (a)
)(

q#ω
S3
)+ Pr (a)

(
q#ω

S3
)
,

hence,
m′′(a) = m′′′(a) .

Arbitrary subsequences of Gũn′#h(·, v) thus have subsequences de conver-
gent to a unique limit, determined by the coordinate hyperplane currents Pi

s ,
and for the original subsequence n′ (which was chosen independent of v) the
currents Gũn′#h(v, t) de converge for a.e. t ∈ R. From Fubini’s theorem, we
finally conclude that, for a.e. hyperplane h ∈ H , the de limit

S(h) = lim
n→∞ Gũn′#h

exists.
To check that S is a scan cycle, we note that, for a.e. h ∈ H , Lemma 2.4

and Fatou’s lemma imply that

lim inf
n′→∞

M
(
Gũn′#(h�B4

2)
)

< ∞ ,

so that S(h) is the limit of a locally M bounded, weakly convergent, subsequence
Gũn′′#h. In particular, using [F], Section 4.3.2,

S(h)∩(h′×[[S3]]
) = ( lim

n→∞ Gũn′′#h
)∩(h′×[[S3]]

) = lim
n→∞

(
(Gũn′′#h)∩(h′×[[S3]])

)
for almost every h′ ∈ H . Moreover, Section 1 and the same argument show
that, for almost every h′ ∈ H ,

lim
n→∞

(
(Gũn′′#h)∩(h′×[[S3]])

)= lim
n→∞

(
(Gũn′′#h′)∩(h×[[S3]])

)= S(h′)∩(h×[[S3]]
)

for a.e. h ∈ H . Also, for almost every polyhedral frontier ∂[[U ]] as in Section 1,
one has, by the previous slicing remark, that ∂(S∂U )= limn→∞ ∂Gũn′′#∂[[U ]]=0,
and(

S∂U
)(

q#ω
S3
) = lim

n→∞ Gũn′′#∂[[U ]]
(
q#ω

S3
) = lim

n→∞ Gũn′′#[[U ]]
(
dq#ω

S3
) = 0 ,

so that S is a scan cycle.
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7. – Structure and rectifiability of the limiting scan

Here we will show that the limiting scan of Theorem 6.1 is carried by
the graph of the limiting map and a set RS × S3 for some 1 rectifiable subset
RS of an energy concentration set of finite measure. The measure estimate is
provided by the elementary

Lemma 7.1. For ε > 0 and any sequence un ∈ W 1,3(R4, S2) with L ≡
supn

∫ |∇un|3 dx being finite, the ε energy concentration set

Eε =
{

x ∈ R4 : lim
r→0

lim inf
n→∞

1

r

∫
Br (x)

|∇un|3 dy ≥ ε

}
,

has H1(Eε) ≤ 24ε−1L.

Proof. Let K be a compact subset of Eε . For each δ > 0 and point x ∈ K ,
we may choose a positive rx < 1

2δ so that

lim inf
n→∞

1

rx

∫
Brx (x)

|∇un|3 dy >
1

2
ε .

By compactness and the Vitali covering theorem, we may choose a finite subset
A of K so that the corresponding balls {Bra (a) : a ∈ A} are disjoint while their
triple enlargements {B3ra (a) : a ∈ A} cover K . We may now choose a single
integer n sufficiently large to guarantee that

1

ra

∫
Bra (a)

|∇un|3 dy ≥ 1

2
ε

for all a ∈ A. Thus,

H1
δ (K ) ≤

∑
a∈A

2(6ra) ≤ 24ε−1
∑
a∈A

∫
Bra (a)

|∇un|3 dy ≤ 24ε−1L .

Letting δ ↓ 0 and taking the supremum over such K completes the proof.

As motivation for our rectifiability Theorem 7.2, recall that a 1 dimensional,
finite mass, integer-multiplicity rectifiable current T in R4 is given by 3 things:

a 1 rectifiable set RT of finite measure,
an H1 measurable �T : RT → S3 orienting a.e. the approximate tangent of RT , and
an H1 integrable multiplicity function mT : RT → Z+

so that

T (φ) =
∫

RT

< �T (x), φ(x) > mT (x) dH1x for φ ∈ D(R4) .
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Each of these three may be determined, H1 a.e., by the 0 dimensional
slices T ∩ h for a.e. h ∈ H . More, in fact, is true.

For any countably 1 rectifiable set R ⊃ RT and v ∈ S3, let

�R,v ≡
{

x ∈ R : h(v, x · v) is not transverse to the

approximate tangent line of R at x
}

and observe that
VR ≡ {v ∈ S3 : H1(�R,v) > 0}

is at most countable because H1(�R,v ∩ �R,v′) > 0 if and only if v = ±v′.
Now fixing a direction v ∈ S3 \ VR , one has, at a.e. point x ∈ RT , that

mT (x) = mT ∩h(v,x ·v)(x) > 0

and that the choice of orientation �T (x) is determined by the slice condition

sgn
[ �T (x) · v

] = sgn
[(

T ∩ h(v, x · v)
)(

χ
Bρ(x)

)]
for ρ > 0 small. Also, up to an H1 null set, the carrying set for T ,

RT = ∪t∈R{x : mT ∩h(v,t)(x) �= 0} .

Thus, for such a generic v ∈ S3 \ VR , the rectifiable current T is completely
determined just by its slices by almost all of the parallel hyperplanes {h(v, t) :
t ∈ R}.

The bubble part of our limiting scan has a similar representation by a recti-
fiable set, orienting vectorfield, and multiplicity function, except the multiplicity
function is only L3/4 integrable.

Theorem 7.2. There is a positive constant ε1 so that if un′, u, ũn′, ũ, and
S = limn→∞ Gũn′# are as in Theorem 6.1, then, there exist an H1 measurable 1
rectifiable subset RS of the ε1 energy concentration set Eε1 for un, anH1 measurable
�S : RS → S3 orienting a.e. the approximate tangent line of RS, and a nonzero
integer multiplicity function mS with

∫
RS

m3/4
S dH1 < ∞ such that for almost every

hyperplane h ∈ H,

S(h) = Gũ|h +
∑

a∈RS∩h

sgn
(�S(a) · �h ∗)mS(a)[[a]] × [[S3]] .

Proof. First to choose ε1, note that there is a uniform bilipschitz equivalence
between each half-cube Qv

r (a) (from the proof of Theorem 5.3) and the ball
Br . Thus by Lemma 2.2 there is a positive λ0 so that

inf

{∫
∂Qv

r (a)

|∇ψ |3 dH3 : ψ ∈ W 1,3(∂Qv
r (a), S2), Hopf deg(ψ) �= 0

}
> λ0δ0 .
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Let

ε1 = 1

6
min{ε0, λ0δ0} .

Next recall [G], Th.2.2, that, for the W 1,3(R4) function ũ, the set of energy
density points

X ≡
{

x ∈ R4 : lim sup
r→0

1

r

∫
Br (x)

|∇ũ|3 dy > 0
}

.

has H1(X) = 0.
By Lemma 4.1 and Theorem 6.1, we know that for any fixed direction v ∈

S3, we have, for t off some measure zero subset Zv of R, that ũ|h(v, t) ∈ W 1,3

and that the sequence Gun′#h(v, t) is de convergent to

S
(
h(v, t)

) = Gũ|h(v,t) +
∑

a∈A(v,t)

mv,t(a)[[a]] × [[S3]]

for some finite subset A(v, t) of h(v, t) and non-zero integers mv,t . We will
next verify that, for all such t ∈ R \ Zv ,

A(v, t) \ X ⊂ Eε1 .

Assuming, for contradiction that a ∈ A(v, t) \ (X ∪ Eε1), we choose a
positive ρ sufficiently small so that A(v, t) ∩ Bρ(a) = {a} and

∫
h(v,t)∩Bρ(a)

|∇ũ|3 dH3 +ρ−1
∫

Bρ(a)

|∇ũ|3 dy + lim inf
n→∞ ρ−1

∫
Bρ(a)

|∇un|3 dy < 3ε1 .

By Fatou’s lemma and Fubini’s theorem,

∫ ρ
2

0
lim inf
n→∞

∫
∂Qr (a)

(|∇ũ|3 + |∇un|3
)
dH3dr

≤ lim inf
n→∞

∫
Q ρ

2
(a)

(|∇ũ|3 + |∇un|3
)

dy < 3ε1ρ

where, as before, Qr (a) = ∏4
i=1(ai − r, ai + r) ⊂ B2r (a). Recalling now the

proof of Step II of Theorem 5.3, we see that we may pass to a subsequence
and find r ∈ [0, ρ/2] so that, for all n,∫

∂Qr (a)

(|∇ũ|3 + |∇un|3
)
dH3 < 6ε1 ,

and so that, for each of the 8 hyperplanes hi
a±r determined by the faces of

Qr (a), ũ|hi
a±r ∈ W 1,3 and each sequence Gun′#hi

a±r is locally M bounded and
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convergent as in Lemma 4.1. As in the proof of Theorem 5.3, r can also be
chosen so that these convergences restrict to each face of the half-cube Qv

r (a).
However, now, by Theorem 4.2 and the last small energy estimate, no bubbles
occur on any of the faces in the coordinate hyperplanes hi

a±r , while, on the
remaining face in h(v, t), exactly one bubble occurs at a because A(v, t) ∩
∂Qv

r (a) = {a}. Also the small energy estimate∫
∂Qv

r (a)

|∇u|3 dH3 < 6ε1

implies (
Gũ|∂Qv

r (a)

)(
q#ω

S3
) = 4π2 Hopf deg

(
u|∂Qv

r (a)
) = 0 .

Summing over the faces in ∂Qv
r (a) now gives the desired contradiction

0 = lim
n→∞ ∂ 0 = lim

n→∞ ∂q#Gũn′#[[Qv
r (a)]]

(
ω

S3
)

= lim
n→∞ Gũn′#∂[[Qv

r (a)]]
(
q#ω

S3
)

= ±2π2mv,t (a) + (
Gũ|∂Qv

r (a)

)(
q#ω

S3
)

= ±2π2mv,t (a) + 0 ,

and establishes the inclusion A(v, t) \ X ⊂ Eε1 .
By Lemma 7.1 and the Besicovitch Structure theorem [F], 3.3.13, the energy

concentration set Eε1 contains an H1 measurable 1 rectifiable set R so that the
“unrectifiable visibility” directions

Y ≡ {v ∈ S3 : H1(πv(Eε1 \ R)
)

> 0}

have H3 measure 0. Also, as before, the “non-generically transverse” directions

VR =
{
v ∈ S3 : H1(�R,v) > 0

}
are at most countable.

Ignoring these exceptional directions, we now fix one direction v ∈ S3 \
(Y ∪ VR) and let

RS ≡
⋃{

A(v, t) : t ∈ R \ [Zv ∪ πv

(
X ∪ (Eε1 \ R) ∪ �R,v

)] }
.

and, for a ∈ RS , let
mS(a) ≡ |mv,v·a(a)| ,

and �S(a) be the unit vector orienting the approximate tangent line of R at a
with sgn

(�S(a) · v
) = sgn mv,v·a(a). These definitions automatically give the

desired formula for S(h) in case h = h(v, t) for almost all t ∈ R.
We will now show that the formula continues to hold for hyperplanes in

almost all other directions; i.e. that these definitions are, up to an H1 null set,
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independent of our choice of v ∈ S3 \ (Y ∪ VR). For this, we now fix a second
direction v′ ∈ S3 \(Y ∪VR). Since RS ⊂ R and H1(�R,v′) = 0, the area formula
applied to πv′ |R shows that

RS ∩ π−1
v′
[

Zv′ ∪ πv′
(

X ∪ (Eε1 \ R) ∪ �R,v′
)]

has H1 measure zero. It now suffices for us to verify, at each of the remaining
points a ∈ RS \ π−1

v′
[

Zv′ ∪ pv′
(

X ∪ (Eε1 \ R) ∪ �R,v′
)]

, that a ∈ A(v′, v′ · a)

and that the integer multiplicity mv′,v′·a(a) is correct, that is,

|mv′,v′·a(a)| = |mS(a)| and sgn mv′,v′·a(a) = sgn
(�S(a) · v′) .

We will argue as before by considering the behavior on the boundary of small
half-cubes

Qv
r (a) ≡ {x ∈ Qr (a) : (x − a) · v > 0} , Qv′

r (a) ≡ {x ∈ Qr (a) : (x − a) · v′ > 0} ,

To use this same notation, we assume (as can be achieved by rotating coordi-
nates) that none of the four coordinate directions (1, 0, 0, 0), . . . , (0, 0, 0, 1) are
in the exceptional directions Y ∪VR . We also suppose first, for convenience that

sgn
(�S(a) · v

)
> 0 , sgn

(�S(a) · v′) > 0 .

Then the (affine) approximate tangent line {a + t �S(a) : t ∈ R} of R intersects
the closed conical region

C ≡ {x :(x − a)· v ≤ 0, (x − a)· v′ ≥ 0} ∪ {x :(x − a) · v ≥ 0, (x − a) · v′ < 0}
=

⋃
r>0

[
Qv

r (a) \ Qv′
r (a)

] ∪ [
Qv′

r (a) \ Qv
r (a)

]

only at a and
lim sup

r→0
r−1H1(R ∩ C ∩ Br (a)

) = 0 ,

so that, by Fubini’s theorem,

J ≡ {r > 0 : R ∩ C ∩ ∂Qr (a) �= ∅},
has density 0 at 0. Also, since both restrictions ũ|h(v, v · a) and ũ|h(v′, v′ · a)

are W 1,3 and a /∈ X , we may argue as before to choose a positive r /∈ J so that

Br (a) ∩ A(v, v · a) = {a}, Br (a) ∩ A(v′, v′ · a) ⊂ {a} ,∫
h(v,v·a)∩Br (a)

|∇ũ|3 dH3 +
∫

h(v′,v′·a)∩Br (a)

|∇ũ|3 dH3 +
∫

∂Qr (a)

|∇ũ|3 dH3 < ε1,

a1 ± r /∈ Z(1,0,0,0) ∪ π(1,0,0,0)

(
X ∪ (Eε1 \ R) ∪ �R,(1,0,0,0)

)
, . . . ,

a4 ± r /∈ Z(0,0,0,1) ∪ π(0,0,0,1)

(
X ∪ (Eε1 \ R) ∪ �R,(0,0,0,1)

)
.
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and so that, for a subsequence, there the weak convergence of currents

lim
n→∞ Gũn′#∂[[Qv

r (a)]] = Gũ|∂Qv
r (a) +

∑
b∈B

m(b)[[b]] × [[S3]](7.1)

lim
n→∞ Gũn′#∂[[Qv′

r (a)]] = G
ũ|∂Qv′

r (a)
+
∑
b∈B′

m ′(b)[[b]] × [[S3]](7.2)

for some finite subsets B of ∂Qv
r (a), B ′ of ∂Qv′

r (a), and integer multiplicities
m, m ′. Then

B ∩ h(v, v · a) = {a} , m(a) = mv,v·a(a) ,

B ′ ∩ h(v′, v′ · a) ⊂ {a} , m ′(a) = mv′,v′·a(a) in case a ∈ A(v′, v′ · a) .

For the remaining faces, we infer from Theorem 4.2 and our choice of r that

(B ∪ B ′) \ {a} ⊂ (
R ∩ ∂Qv

r (a) \ h(v, v · a)
) ∪ (

R ∩ ∂Qv′
r (a) \ h(v′, v′ · a)

)
⊂ (

∂Qv
r (a) \ h(v, v · a)

) ∪ (
∂Qv′

r (a) \ h(v′, v′ · a)
) \ C

= ∂
(
Qv

r (a) ∩ Qv′
r (a)

) \ (h(v, v · a) ∪ h(v′, v′ · a)
)
.

So we may restrict our mappings to the latter set and pass to the limit to
conclude that

B \ {a} = B ′ \ {a} and m(b) = m ′(b) for b ∈ B \ {a} .

As before, the smoothness of the un′ gives

Gũn′#∂[[Qv
r (a)]]

(
q#ω

S3
) = ∂Gũn′#[[Qv

r (a)]]
(
q#ω

S3
) = 0 ,

Gũn′#∂[[Qv′
r (a)]]

(
q#ω

S3
) = ∂Gũn′#[[Qv′

r (a)]]
(
q#ω

S3
) = 0 ,

while the small energy condition∫
∂Qv

r (a)

|∇u|3 dH3 +
∫

∂Qv′
r (a)

|∇u|3 dH3 < 2ε1

implies (
Gũ|∂Qv

r (a)

)(
q#ω

S3
) = 0 = (

G
ũ|∂Qv′

r (a)

)(
q#ω

S3
)
.

Plugging the form q#ω
S3 into (7.1) and (7.2) now gives

0 = 0 + 2π2m(a) +
∑

b∈B\{a}
2π2m(b)

= 0 + 2π2m(a) +
∑

b∈B′\{a}
2π2m ′(b)

= 0 +
∑
b∈B′

2π2m ′(b) ,
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and we conclude that Br (a) ∩ A(v′, v′ · a) = {a} and mv′,v′·a = m ′(a) =
m(a), hence,

|mv′,v′·a| = |m(a)| = |mS(a)|,
sgn mv′,v′·a(a) = sgn m(a) = sgn mv,v·a(a) = sgn

(�S(a) · v
) = sgn

(�S(a) · v′).
The remaining three cases where(

sgn(�S(a) · v), sgn(�S(a) · v′)
) = (−1, +1), (+1, −1), (−1, −1) ,

may be treated similarly, and we now have the desired representation formula
for S

(
h(v′, t)

)
for a.e.t ∈ R.

The set RS , being a subset of the 1 rectifiable set R is itself 1 rectifiable.
To see that it is also H1 measurable, it suffices to show that

lim
r→0

r−1H1(Br (a) ∩ RS
) = 1 for a.e. a ∈ RS ,

lim
r→0

r−1H1(Br (a) \ RS
) = 0 for a.e. a ∈ R \ RS .

Both of these may be verified by arguing as before taking v ∈ S3 \ (Y ∪VR) and
forming the limits of a subsequence of graphs restricted to a half-cube boundary
∂Qv

r (a) for a generic point a ∈ R \ X and generic small positive r . Here R is
H1 almost contained in a countable union of C1 arcs 	i , and one may insist
that a be a point of density 1 for precisely one 	i and be of density 0 for all
the others. So as before, r is chosen so that ∂Qv

r (a) hits 	i transversally at
a and at preciesly one other point ar ∈ ∂Qv

r (a). The limiting current equation
guarantees that this point ar ∈ RS if and only if a ∈ RS and in which case that
mS(ar ) = mS(a) and that �S(ar ) and �S(a) give the same orientation to 	i . The
set of suitable positive r for both v and −v has density 1 at 0. For the point
a, we conclude not only the above density statements, but also the approximate
continuity of both mS and �S. Thus we verify the H1 measurabliity of the set
RS as well as the H1�RS measurabliity of the functions mS and �S.

To establish the multiplicity estimate, we will prove, for a.e. h ∈ H ,
the bound

(7.3)
∑

a∈RS∩h

m
3
4
S (a) ≤ C lim inf

n→∞

∫
h
|∇un′ |3 dH3 .

This will do it because we may then choose a frame {v1, v2, v3, v4} ⊂ S3 \ (Y ∪
VR) and apply the coarea formula to each pvi |RS as well as Fatou’s lemma
and Fubini’s theorem to deduce that∫

RS

m
3
4
S dH1 ≤

4∑
i=1

∫
RS

m
3
4
S |vi · �S| dH1 =

4∑
i=1

∫ ∞

−∞

∑
a∈RS∩h(vi ,t)

m
3
4
S (a) dt

≤ C
4∑

i=1

∫ ∞

−∞
lim inf
n→∞

∫
h(vi ,t)

|∇un′ |3 dH1 dt = 4C lim inf
n→∞

∫
R4

|∇un′ |3 dx < ∞ .
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To verify (7.3) (by contradiction) we may pass to subsequences depending
on h, without changing notations. In particular, we may by Fatou’s lemma,
assume that supn′

∫
h |∇un′ |3 dH3 < ∞ and that the graphs Gũn′# converge to

S(h), as in Lemma 4.1, weakly as currents. For each point a ∈ RS ∩ h,

lim
r↓0

∫
Br (a)∩h

|∇u|3 dH3 = 0 ,

and we have, for a.e. r > 0, strong W 1,3 convergence of a subsequence
on the 2 dimensional sphere h ∩ ∂Br (a). So there is, for any ε > 0, a
small r > 0 so that B2r (a) ∩ RS ∩ h = {a} and so that (for a subsequence)
supn′

∫
h∩∂Br (a) |∇un′ |3 dH2 < ε. Then we may obtain extensions ψn′ : h → S2 of

un′ |(h∩Br (a)
)

so that ψn′ is a constant yn′ on h\B2r (a) and supn′
∫

h∩
(

B2r(a)\Br (a)
)

|∇ψn′ |3 dH3 < cε. It follows that the induced relative map

ψn′ :
(
h ∩ B2r (a), h ∩ ∂B2r (a)

) → (
S2, {yn′ })

has a well-defined Hopf degree, which must, for n′ sufficiently large, be the
multiplicity mS(a), by the convergence of Gũn′# and the formula for S(h). From
the conformal invariance of the 3 energy in 3 dimensions and the lower bound
of [R1], we now conclude that∫

h∩Br (a)

|∇un′ |3 dx + cε ≥
∫

h∩B2r (a)

|∇ψn′ |3 dx ≥ C−1mS(a)
3
4

Summing over a ∈ RS ∩ h and letting n′ → ∞ and ε → 0 now gives (7.3) and
completes the proof.

Remark 7.3. The vanishing of the second term in 7.2 (i.e. no “bubbling”)
does not guarantee that the convergence is strong in W 1,3. In fact, it is easy to
make a construction as in Section 2.4 of a smooth map un : R4 → S2 which is
constant (0, 0, 0, 1) outside the 1/4n tubular neighborhoods of the two parallel
intervals [(0, 0, 0, 0), (1, 0, 0, 0)], [(0, 1/n, 0, 0), (1, 1/n, 0, 0)] and which has
Hopf degree +1 and −1 on the slices of these 2 tubular neighborhoods by the
hyperplane x2 = t for 1/n ≤ t ≤ 1 − 1/n. One can insist that∣∣∣∣2 δ0 −

∫
R4

|∇un|3 dx

∣∣∣∣ ≤ 1

n
.

The weak W 1,3 limit is a constant map, but the energy drop is not detected by
the limiting scan, which is the constant [[R4

]
] × [[(0, 0, 0, 1)]] by cancellation.

Note that here one may have the energy concentration on an interval, with the
convergence of the positive measures,

lim
n→∞ |∇un|3 dx → 2 · 2π2 H1�[(0, 0, 0, 0), (1, 0, 0, 0)] ,

even though the “topological” part of this concentration vanishes.
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8. – Connecting the singularities of a general finite energy map

It is still unknown whether an arbitrary map u ∈ W 1,3(R4, S2) is a weak
W 1,3 sequential limit of smooth maps in C∞(R4, S2) although some other cases
of such weak density have been established [Be1], [PR], [HgL2]. In this section,
we verify that we can still (as in the conclusion of Theorems 6.1) cap off the
scan boundary of the graph of a Coulomb lift of u by addition of an oriented
vertical scan.

As motivation for our proof, consider a corresponding construction [GMS2],
2.5, for the simpler case of a map u ∈ W 1,2(R3, S2). Here one can first
approximate u strongly in W 1,2 by maps un ∈ C∞(R3 \ An) ∩ W 1,2 with An a
finite set. Then as currrents

∂Gun = ∂
(

In × [[S2]]
)

where In is a “minimal connection”, a finite sum of oriented intervals whose
boundary gives the points of An with multiplicities determined by the local
degrees of un . Then local mass bounds for Gun and In × [[S2]] along with
the Federer-Fleming Compactness theorem provide subconvergence of the aug-
mented graphs Gun − In × [[S2]] to an integer-multiplicity rectifiable current in
the form Gu − I × [[S2]], in particular, ∂

(
Gu − I × [[S2]]

) = 0.
In our situation, we need to work with the scan cycles of augmented graphs

of Coulomb lifts, replacing mass bounds by L 3/4 slice mass bounds and the
Federer-Fleming Compactness theorem by a version of Section 6 upgraded to
handle such augmented graphs.

Theorem 8.1. For any map u ∈ W 1,3(R4, S2) with u constant outside of B2
and Coulomb lift ũ : R4 → S3,

∂
(
Gũ − T

) = 0

for some scan T such that, for all v ∈ S3 and a.e. t ∈ R,

T
(
h(v, t)

) =
∑

a∈Av,t

mv,t [[a]] × [[S3]] ,

for some finite subset Av,t of h(v, t) and non-zero integers mv,t with

∫
R


 ∑

a∈Av,t

mv,t




3
4

dt ≤ C
(

1 +
∫

|∇u|3 dx
)

.

Proof. We first recall from [Be1] that there is, for each positive integer
n, a finite subset An of B1 and a map un ∈ C∞(R4 \ An) ∩ W 1,3 with un ≡ u
outside of B2 and

lim
n→∞

∫
|∇un − ∇u|3 dx = 0 .
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In particular, by passing to a subsequence,

L ≡ sup
n

∫
|∇un|3 dx ≤ 2

∫
|∇u|3 dx < ∞ .

We may also insist that near each point a ∈ An , un is homogeneous with Hopf
degree on small spheres about a being ±1. Consider now the Coulomb gauge
η̃n ∈ E1(R4 \ A) of un defined by the formula of Section 2. By the simple-
connectivity of R4 \ A, this gauge provides, as in Section 2, a corresponding
Coulomb lift ũn ∈ C∞(R4 \ A, S3) ∩ W 1,3 with

∂Gũn =
∑

a∈An

mn(a)[[a]] × [[S3]]

where mn(a) = deg
(
ũn|∂Bε(a)

) = Hopf deg
(
un|∂Bε(a)

)
for all sufficiently

small ε > 0. As before, neither
∫ |∇ũn|3 dx nor M

(
Gũn

)
is necessarily uni-

formly bounded independent of n, but one still has all the integral estimates
of Lemma 2.2 with u, ũ replaced by un, ũn . With these, one verifies that ũn

converges weakly in W 1, 5/12 (also strongly in L1, 5/12 and pointwise a.e.) to
a Coulomb lift ũ of u.

While we cannot, by Example 2.5, hope to find a uniformly mass-bounded
minimal connection to cap off ∂Gũn , we can use a suitable level curve ũ−1

n {y}.
To choose y, first note that the set �n of critical values of ũn has H3(�n) =

0. By Jensen’s inequality, the coarea formula, and the above estimate, we also
find that, for each v ∈ S3,

∫
S2

∫
R

card
(
ũ−1

n {y} ∩ π−1
v {t}

)3
4 dtdH3 y ≤

∫
R

(∫
S2

card
(
ũ−1

n {y} ∩ π−1
v {t}dH2 y

)3
4

dt

≤
∫

R

(∫
π−1
v {t}

|ũ#
nωS3 |

)3
4

dt = c
∫

R

(∫
π−1
v {t}

|η̃n ∧ dη̃n|
) 3

4

dt

≤ c
∫

R

(
‖∇un‖4

L3(π−1
v {t})

)3
4 dt = c

∫
B4

|∇un|3dx ≤ c L .

In particular, integrating over v ∈ S3, we see from Fatou’s lemma and Fubini’s
theorem that H3(�) = 0 where � = {y ∈ S3 : H3(Wy) > 0} with

Wy =
{

v ∈ S3 :
∫

R

lim inf
n→∞ card

(
ũ−1

n {y} ∩ π−1
v {t}) 3

4 dt = ∞
}

.

Finally, to get a uniform bound for de estimates, we can now, fix a single point
y ∈ S3 \ (� ∪ ∪∞

n=1�n) and pass to a subsequence so that

sup
n

∫
R

card
(
ũ−1

n {y} ∩ π−1
ej

{t}) 3
4 dt ≤ c L

for each j ∈ {1, 2, 3, 4}.
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Since y ∈ S3 is a regular value for each ũn , the set

Rn ≡ ũ−1
n {y}

is a union of smooth curves that transversely intersect almost all of the hy-
perplanes π−1

ej
{t}. The set Rn is readily oriented to become a 1 dimensional

rectifiable current In with ∂ In = ∑
a∈An

mn(a)[[a]] so that

∂
(

In × [[S3]]
) = ∂Gũn#[[R4]] .

Then, in the langauge of scans,

∂
(
Gũn# − Tn

) = 0

where Tn is the corresponding vertical scan defined by Tn(h) = (
In ∩h

)× [[S3]]
for a.e. h ∈ H .

We now discuss how to carry over essentially all the results of Section 5-
Section 6 replacing the former sequence of scan cycles of smooth functions
Gũn# by the present sequence of augmented scans Gũn# − Tn . Since, for a.e.
t ∈ R,

M
(
Tn[h(ej , t)]

) = 2π2 card
(

Rn ∩ π−1
ej

{t})
we still have, from the new Lemma 2.2 estimate and the choice of y, the basic
global bound

4∑
j=1

∫ [
M(Gũn# − Tn)

(
h(ej , τ )�B2

) ] 3
4 dτ ≤ 4C

B2
(1 + L) + 32π2c L .

We need a new version of Section 5 in which the scan Gw# of a smooth map
w ∈ C∞(R4, S3) is replaced by an augmented scan Gw# − T corresponding to a
map w ∈ C∞(R4 \ A, S3) ∩ W 1,3 with A finite and a rectifiable vertical current
T such that ∂T = ∂Gw#[[R4]]. In the proof of Theorem 5.1, one now uses,
for almost all s, t ∈ R, the rectifiable current

Ts,t = (
Gw#[[R4]] − T

)
�p−1

v

(
st
)

to connect
(
Gw# − T

)
h(s, v) to

(
Gw# − T

)
h(t, v). The remainder of the

proof carries over to give a corresponding fractional maximal estimate for
Gw#[[R4]] − T .

In Step I of the proof of the new version of Theorem 6.1, we now just
consider directions v ∈ S3 outside the measure zero set Wy . In the application
of the appendix Theorem 9.1, we simply take fn(t) = (

Gũn# − Tn
)
h(t, v) and

keep everything else the same. In Step II, one considers, for a fixed v ∈ S3\Wy ,
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subsequences of
(
Gũn# − Tn

)
h(t, v) for almost all t ∈ R. In addition to the

measure zero sets Z , Z̃ defined as before, one also now avoids the set

Ẑ ≡ πv(An) ∪ {t ∈ R : lim inf
n→∞ card

(
Rn ∩ π−1

v {t}) = ∞} ,

which has measure 0 by Fatou’s lemma and the fact that v /∈ Wy . Then, for
t ∈ R \ (Z ∪ Z̃ ∪ Ẑ), a de limit P(t) of a subsequence of

(
Gũn# − Tn

)
h(t, v)

again has the form

P(t) = Gũ|h(v,t) +
∑

a∈h(v,t)

mv,t (a)
(
[[a]] × [[S3]]

)

because P(t) is, by Fatou’s lemma, a weak limit of some uniformly mass
bounded subsequence

Gũn′′#h(t, v) − (
In′′ ∩ h(t, v)

)× [[S3]]

with ũn′′ |h(t, v) smooth and uniformly 3-energy bounded and In′′ ∩ h(t, v) uni-
formly mass bounded. We also have the estimate

∫
R


 ∑

a∈Av,t

mv,t




3
4

dt ≤ C
(

1 +
∫

|∇u|3 dx
)

.

We again apply Step I to obtain a subsequence de convergent at almost every
coordinate hyperplane. Then one verifies the automatic convergence of this
same subsequence on hyperplanes h(v, t) for any other direction v ∈ S3 \ Wy

and a.e. t ∈ R by considering currents lying over the boundary of a small
half-cube Qv

r (a). For the total boundary, one now uses the relation

(
Gũn#∂[[Qv

r (a)]] + (In ∩ ∂[[Qv
r (a)]]) × [[S3]]

)(
q#ω

S3
)

= ∂q#
(
Gũn#[[Qv

r (a)]] − (In ∩ [[Qv
r (a)]]) × [[S3]]

)(
ω

S3
) = ∂ 0

(
ω

S3
) = 0 ,

which leads to

2π2m′′(a) + σ
(
Gũ|h(v,t)�p−1∂Qv

r (a)
)(

q#ω
S3
)+ Pr (a)

(
q#ω

S3
)

= lim
n→∞

(
Gũn′′#∂[[Qv

r (a)]] + (In′′ ∩ ∂[[Qv
r (a)]]) × [[S3]]

)(
q#ω

S3
)

= lim
n→∞ 0

= lim
n→∞

(
Gũn′′′#∂[[Qv

r (a)]] + (In′′′ ∩ ∂[[Qv
r (a)]]) × [[S3]]

)(
q#ω

S3
)

= 2π2m′′′(a) + σ
(
Gũ|h(v,t)�p−1∂Qv

r (a)
)(

q#ω
S3
)+ Pr (a)

(
q#ω

S3
)
,

so that again m′′(a) = m′′′(a). Thus we have de convergence of a subsequence
of Gũn′# at a.e. h ∈ H to a limiting scan S = Gũn′# − T with T of the required
form, and we again verify that S is a scan cycle.
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Remark 8.2. It seems unlikely that the scan T obtained in the proof of
Section 8.1 is 1 rectifiable in the sense of Theorem 7.2. One is tempted to
replace the energy concentration set used in Lemma 7.1 by the fractional mass
slice concentration set

Fε = {x ∈ R4 : lim
r→0

lim inf
n→∞

1

r
νn
(
Br (x)

)
> ε}

defined with the super-additive function

νn(U ) =
4∑

j=1

(∫
card

(
U ∩ Rn ∩ π−1

ej
{t}) 3

4 dt
) 4

3
for open U ⊂ R4 .

However the new Lemma 4.1 then only gives an estimate of H4/3(Fε) rather
than of H1(Fε). Following some of the proof of Theorem 7.2, one then only
obtains an H4/3 measure estimate for the carrying set of the scan T . In future
work we hope to consider a more efficient scan connection for the topologi-
cal singularities.

9. – Appendix. Compactness from a fractional maximal function bound

Let 0 < α < 1, X be a closed interval, Y be a metric space, and N be a
nonnegative, lower semi-continuous function on Y such that {y ∈ Y : N (y) ≤ R}
is sequentially compact for all finite positive R. For any measurable f : X → Y
and subinterval I of X , let MI f denote the associated α-maximal function,

(MI f )(x) ≡ esssup
x �=x̃∈I

dist
(

f (x), f (x̃)
)

|x − x̃ |α

for x ∈ I .

Theorem 9.1. Suppose that for each n = 1, 2, . . . , fn : X → Y is a measurable
map satisfying on each subinterval I of X, a (weak-type) measure estimate

(9.1) sup
λ>0

λ
∣∣ {x ∈ I : (MI fn)

1
α (x) > λ} ∣∣ ≤ µn(I ) ,

for some nonnegative function µn of subintervals of X that satisfies the superaddi-
tivity

µn(I ) + µn(J ) ≤ µn(K ) for nonoverlapping subintervalsI, J of K .

If

L ≡ sup
n

∫
X
N
(

fn(x)
)

dx < ∞ and sup
n

µn(X) < ∞ ,
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then fn contains a subsequence that converges pointwise almost everywhere. The
limiting function f : X → Y satisfies similar bounds∫

X
N
(

f (x)
)

dx ≤ L and λ
∣∣ {x ∈ I : (MI f )

1
α (x) > λ} ∣∣ ≤ sup

n
µn(I ) .

Proof. First we observe that it suffices to show there is a subsequence fn′
that is pointwise a.e. Cauchy convergent.

In fact, for a.e. x ∈ X , the sequence fn′(x) will then have, in the completion
Ŷ of Y , a unique limit f (x) a.e. Also, for a.e. x ∈ X , Fatou’s lemma will
provide a subsequence n′′ of n′ (depending on x) so that

sup
n′′→∞

N
(

fn′′(x)
)

< ∞ .

The compactness assumption then will give a subsequence n′′′ of n′′ so that
fn′′′(x) converges to a point of Y . Thus, f (x), being necessarily this limit
point, will belong to Y . Moreover, then, for a.e. x ,

MI f (x) ≤ lim inf
n′→∞

MI fn′(x)

because

dist
(

f (x), f (x̃)
) = lim

n′→∞
dist

(
fn′(x), fn′(x̃)

) ≤ lim inf
n′→∞

MI fn′(x)|x − x̃ |α .

The lower semi-continuity assumption on N and Fatou’s lemma gives∫
X
N
(

f (x)
)

dx ≤
∫

X
lim inf
n′→∞

N
(

fn′(x)
)

dx ≤ lim inf
n′→∞

∫
X
N
(

fn′(x)
)

dx ≤ L .

For the measure estimate, we note that

{x ∈ I : (MI f )
1
α (x) > λ}

is, except for a null set, contained in an increasing union of the sets

Dn = ∩∞
m=n{x ∈ I : (MI fm)

1
α (x) > λ} ,

so that

∣∣{x ∈ I : (MI f )
1
α (x) > λ}∣∣ = lim

n→∞ |Dn|

≤ lim inf
n→∞

∣∣{x ∈ I :(MI fn)
1
α (x) > λ}∣∣ ≤ λ−1µ(I ).

We now construct the desired subsequence which is Cauchy convergent
a.e. Starting with the sequence n0( j) = j , we will choose, by inducton on
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k, a subsequence nk( j) of nk−1( j) and some countable family Ik of closed
subintervals of X along with distinguished points cI ∈ I for each I ∈ Ik so that

Zk = X \
⋃

I∈Ik

I

has measure 0, and, for every I ∈ Ik ,

fnk ( j)(cI ) is Cauchy convergent as j → ∞ and lim sup
j→∞

(MI fnk ( j))
1
α (cI ) ≤ 1

k|I | .

This will do it because then the diagonal subsequence fnj ( j) will be Cauchy
convergent at almost every point x ∈ X . In fact, for almost every x ∈ X\∪∞

k=0 Zk

and for ε > 0, we will be able to choose:

– first an integer k >
( 4

ε

) 1
α ,

– second, an interval I ∈ Ik containing x , and
– third, an integer h ≥ k so that

dist
(

fnk (i)(cI ), fnk ( j)(cI )
)

< ε/3 and (MI fnk ( j))(cI ) <
4

3(k |I |)α

for i, j ≥ h. Then, since ni (i) = nk(i ′) and nj ( j) = nk( j ′) for some
i ′, j ′ ≥ h,

dist
(

fni (i)(cI ), fnj ( j)(cI )
)

< ε/3

dist
(

fni (i)(x), fni (i)(cI )
) ≤ (MI fni (i))(cI )|x − cI |α

≤ (MI fnk (i ′))(cI )(|I |)α <
4|I |α

3(k|I |)α <
ε

3
,

dist
(

fnj ( j)(x), fnj ( j)(cI )
) ≤ (MI fnj ( j))(cI )|x − cI |α <

ε

3
,

hence,
dist

(
fni (i)(x), fnj ( j)(x)

)
<

ε

3
+ ε

3
+ ε

3
= ε .

Fixing k, we will inductively choose subsequences m1( j) of nk−1( j), m2( j)
of m1( j), m3( j) of m2( j), . . . as well as subintervals I1, I2, I3, . . . of X with
points ci ∈ Ii so that

nk( j) = mj ( j) , Ik = {I1, I2, . . . } , cIi = ci

satisfy the desired conditions.
To do this, we first choose an integer

q > 2k sup
n

µn(X),
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and let I be the decomposition of the interval X into 2q nonoverlapping subin-
tervals of equal length. Since, for each n,

∑
I∈I

µn(I ) ≤ µn(X) <
q

2k
,

we may choose a subfamily of q “good” intervals {I n
1 , I n

2 , . . . , I n
q } ⊂ I so that

µn(I n
i ) <

1

2k
for i = 1, 2, . . . , q.

But since there are only finitely many
(2q

q

)
choices of subfamilies, we may

choose a single subfamily {I1, I2, . . . , Iq} ⊂ I and a subsequence m0( j) of
nk−1 so that

µm0( j)(Ii ) <
1

2k
for all i ∈ {1, 2, . . . , q} and all j ∈ {1, 2, . . . } .

Now, for each i = 1, 2, . . . , q, we may use the weak-type bound with
I = Ii and λ = 1/(k|Ii |) to see that each set

Em0( j) =
{

x ∈ Ii : (MIi fm0( j))
1
α (x) >

1

k|Ii |
}

has measure

|Em0( j)| ≤ k|Ii |µm0( j)(Ii ) <
1

2
|Ii |

for all j sufficiently large. By Fatou’s lemma,

∫
Ii

lim inf
j→∞

[
χEm0( j) (x) + |Ii |

3L
N ( fm0( j)(x))

]
dx ≤ 1

2
|Ii | + |Ii |

3L
L = 5

6
|Ii | .

Thus we may choose a point ci ∈ Ii and a subsequence m1( j) of m0( j) so that

χEm1( j) (ci ) + |Ii |
3L

N ( fm1( j)(ci )) < 1

for all j . In particular, ci �∈ Em1( j), hence,

(MIi fm1( j))
1
α (ci ) ≤ 1

k|Ii | .

Also since N ( fm1( j)(ci )) is bounded in j , we may use another subsequence to
assume that

fmi ( j)(ci ) is Cauchy convergent as j → ∞ .
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We are still left with the remaining q (possibly “bad”) subintervals

I \ {I1, . . . , Iq} = {J1, . . . , Jq} .

Scaling shows that we may repeat the above argument first with X, nk−1( j)
replaced by J1, m N ( j) obtaining again q good subintervals Iq+1, . . . , I2q of
J1 and then, inductively, points cq+1 ∈ Iq+1, . . . , c2q ∈ I2q and consecutive
subsequences mq+1( j), . . . , m2q( j) so that

MIq+i f
1
α

mq+i ( j)(cI+i ) ≤ 1

k|Iq+i | and fmq+i ( j)(cq+i ) is Cauchy convergent

for i = 1, . . . , q. Similarly, we extract q good subintervals with distinguished
points from each of J2, . . . , Jq . Then we repeat with the remaining, possibly
bad, subintervals of J1, J2, . . . , Jq . Continuing, we finally obtain consecutive
subsequences mi ( j), intervals Ii , and points ci ∈ Ii so that fmi ( j)(ci ) is Cauchy
convergent as j → ∞.

It also follows that almost every x ∈ X is eventually contained in some
good subinterval Ii , that is,

∣∣X \ ∪∞
i=1 Ii

∣∣ = 0

because, at each stage, the good subintervals cover at least 1/2 of the interval
being considered. For j ≥ i , nk( j) = mj ( j) is a subsequence of mi ( j), hence,
fnk ( j)(ci ) is Cauchy convergent. Moreover, the estimate

MIi f
1
α

nk ( j)(ci ) ≤ 1

k|Ii |
now holds for each i and all j ≥ i , and the proof is complete.
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