On a real hypersurface in of class we consider a local CR structure by choosing complex vector fields in the complex tangent space. Their real and imaginary parts span a -dimensional subspace of the real tangent space, which has dimension If the Levi matrix of is different from zero at every point, then we can generate the missing direction. Under this assumption we prove interior a priori estimates of Schauder type for solutions of a class of second order partial differential equations with coefficients, which are not elliptic because they involve second-order differentiation only in the directions of the real and imaginary part of the tangential operators In particular, our result applies to a class of fully nonlinear PDE’s naturally arising in the study of domains of holomorphy in the theory of holomorphic functions of several complex variables.
@article{ASNSP_2003_5_2_2_345_0, author = {Montanari, Annamaria}, title = {H\"older a priori estimates for second order tangential operators on {CR} manifolds}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {345--378}, publisher = {Scuola normale superiore}, volume = {Ser. 5, 2}, number = {2}, year = {2003}, mrnumber = {2005607}, zbl = {1170.35433}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2003_5_2_2_345_0/} }
TY - JOUR AU - Montanari, Annamaria TI - Hölder a priori estimates for second order tangential operators on CR manifolds JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2003 SP - 345 EP - 378 VL - 2 IS - 2 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_2003_5_2_2_345_0/ LA - en ID - ASNSP_2003_5_2_2_345_0 ER -
%0 Journal Article %A Montanari, Annamaria %T Hölder a priori estimates for second order tangential operators on CR manifolds %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2003 %P 345-378 %V 2 %N 2 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_2003_5_2_2_345_0/ %G en %F ASNSP_2003_5_2_2_345_0
Montanari, Annamaria. Hölder a priori estimates for second order tangential operators on CR manifolds. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 2 (2003) no. 2, pp. 345-378. http://archive.numdam.org/item/ASNSP_2003_5_2_2_345_0/
[1] Hypersurfaces with Bounded Levi Form, Indiana Univ. J. 27 n. 5 (1978), 867-873. | MR | Zbl
- ,[2] The Dirichlet problem for non-linear second order elliptic equations II: Complex Monge-Ampère and uniformly elliptic equations, Comm. Pure Appl. Math. 38 (1985), 209-252. | MR | Zbl
- - - ,[3] Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations., Am. J. Math. 118, n. 6 (1996), 1153-1196. | MR | Zbl
- - ,[4] regularity of solutions of a quasilinear equation related to the Levi operator, Ann. Scuola Norm. Sup. di Pisa Cl. Sci., Serie 4 Vol. XXIII (1996), 483-529. | Numdam | MR | Zbl
,[5] regularity of solutions of the Levi equation, Ann. Inst. H. Poincare, Anal. non Linéaire 15 n. 4 (1998), 517-534. | Numdam | MR | Zbl
,[6] Regularity of solutions of a nonlinear Hörmander type equation, Nonlinear Anal. 47 (2001), 479-489. | MR | Zbl
,[7] On the smoothness of viscosity solutions of the prescribed Levi-curvature equation, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 10 (1999), 61-68. | MR | Zbl
- - ,[8] Smoothness of Lipschitz continuous graphs with non vanishing Levi curvature, Acta Math. 188 (2002), 87-128. | MR | Zbl
- - ,[9] Strong solutions for the Levi curvature equation, Adv. Differential Equations 5 (1-3) (2000), 323-342. | MR
- ,[10] Regularity properties of Levi flat graphs, C.R. Acad. Sci. Paris 329 n. 1 (1999), 1049-1054. | MR | Zbl
- ,[11] Analytic estimates for solutions of the Levi equation, J. Differential Equations 173 (2001), 356-389. | MR | Zbl
- ,[12] regularity of solutions of an equation of Levi’s type in , Ann. Mat. Pura Appl. 180 (2001), 27-58. | MR | Zbl
- ,[13] Regularity properties of solutions of a class of elliptic-parabolic nonlinear Levi type equations, Trans. Amer. Math. Soc. 354 (2002), 2819-2848. | MR | Zbl
- ,[14] “Several Complex Variables and the Geometry of Real Hypersurfaces”, Studies in Advanced Mathematics, CRC Press, Boca Raton, Florida, 1993. | MR | Zbl
,[15] Subelliptic estimates and functions spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161-207. | MR | Zbl
,[16] Estimates for the complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 20 (1974), 429-522. | MR | Zbl
- ,[17] “Elliptic partial differential equations of second order”, Grundlehrer der Math. Wiss. Vol. 224, Springer-Verlag, New York, 1977. | MR | Zbl
- ,[18] “An Introduction to Complex Analysis in Several Variables”, Von Nostrand, Princeton, NJ, 1966. | MR | Zbl
,[19] Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171. | MR | Zbl
,[20] “Function Theory of Several Complex Variables”, Wiley, New York, 1982. | MR | Zbl
,[21] Smooth regularity for solutions of the Levi Monge-Ampère equation, to appear on Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 12 (2001), 115-123. | MR | Zbl
, ,[22] The Levi Monge-Ampère equation: smooth regularity of strictly Levi convex solutions, preprint.
- ,[23] Balls and metrics defined by vector fields I: basic properties, Acta Math. 155 (1985), 103-147. | MR | Zbl
- - ,[24] R. M. Range, “Holomorphic Functions and Integral Representation Formulas in Several Complex Variables, Springer-Verlag, New York, 1986. | MR | Zbl
[25] Hypoelliptic differential operators on nilpotent groups, Acta Math. 137 (1977), 247-320. | MR | Zbl
- ,[26] Fundamental solutions and geometry of the sum of squares of vector fields, Invent. Math. 78 (1984), 143-160. | MR | Zbl
,[27] The Levi equation in higher dimension and relationships to the envelope of holomorphy, Amer. J. Math. 116 (1994), 479-499. | MR | Zbl
- ,[28] Weak solutions for the Levi equation and Envelope of Holomorphy, J. Funct. Anal. 101, n. 4 (1991), 392-407. | MR | Zbl
- ,[29] “Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals”, Princeton university Press, Princeton, New Jersey 1993. | MR | Zbl
,[30] Geometric Properties of Solutions of the Levi equation, Ann. Mat. Pura Appl. 152 (4) (1988), 331-344. | MR | Zbl
,[31] Regularity for Quasilinear Second-Order Subelliptic Equations, Comm. Pure Appl. Math. 45 (1992), 77-96. | MR | Zbl
,