On a real hypersurface
@article{ASNSP_2003_5_2_2_345_0, author = {Montanari, Annamaria}, title = {H\"older a priori estimates for second order tangential operators on {CR} manifolds}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {345--378}, publisher = {Scuola normale superiore}, volume = {Ser. 5, 2}, number = {2}, year = {2003}, mrnumber = {2005607}, zbl = {1170.35433}, language = {en}, url = {https://www.numdam.org/item/ASNSP_2003_5_2_2_345_0/} }
TY - JOUR AU - Montanari, Annamaria TI - Hölder a priori estimates for second order tangential operators on CR manifolds JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2003 SP - 345 EP - 378 VL - 2 IS - 2 PB - Scuola normale superiore UR - https://www.numdam.org/item/ASNSP_2003_5_2_2_345_0/ LA - en ID - ASNSP_2003_5_2_2_345_0 ER -
%0 Journal Article %A Montanari, Annamaria %T Hölder a priori estimates for second order tangential operators on CR manifolds %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2003 %P 345-378 %V 2 %N 2 %I Scuola normale superiore %U https://www.numdam.org/item/ASNSP_2003_5_2_2_345_0/ %G en %F ASNSP_2003_5_2_2_345_0
Montanari, Annamaria. Hölder a priori estimates for second order tangential operators on CR manifolds. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 2 (2003) no. 2, pp. 345-378. https://www.numdam.org/item/ASNSP_2003_5_2_2_345_0/
[1] Hypersurfaces with Bounded Levi Form, Indiana Univ. J. 27 n. 5 (1978), 867-873. | MR | Zbl
- ,[2] The Dirichlet problem for non-linear second order elliptic equations II: Complex Monge-Ampère and uniformly elliptic equations, Comm. Pure Appl. Math. 38 (1985), 209-252. | MR | Zbl
- - - ,[3] Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations., Am. J. Math. 118, n. 6 (1996), 1153-1196. | MR | Zbl
- - ,
[4]
[5]
[6] Regularity of solutions of a nonlinear Hörmander type equation, Nonlinear Anal. 47 (2001), 479-489. | MR | Zbl
,[7] On the smoothness of viscosity solutions of the prescribed Levi-curvature equation, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 10 (1999), 61-68. | MR | Zbl
- - ,[8] Smoothness of Lipschitz continuous graphs with non vanishing Levi curvature, Acta Math. 188 (2002), 87-128. | MR | Zbl
- - ,[9] Strong solutions for the Levi curvature equation, Adv. Differential Equations 5 (1-3) (2000), 323-342. | MR
- ,[10] Regularity properties of Levi flat graphs, C.R. Acad. Sci. Paris 329 n. 1 (1999), 1049-1054. | MR | Zbl
- ,[11] Analytic estimates for solutions of the Levi equation, J. Differential Equations 173 (2001), 356-389. | MR | Zbl
- ,
[12]
[13] Regularity properties of solutions of a class of elliptic-parabolic nonlinear Levi type equations, Trans. Amer. Math. Soc. 354 (2002), 2819-2848. | MR | Zbl
- ,[14] “Several Complex Variables and the Geometry of Real Hypersurfaces”, Studies in Advanced Mathematics, CRC Press, Boca Raton, Florida, 1993. | MR | Zbl
,[15] Subelliptic estimates and functions spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161-207. | MR | Zbl
,
[16] Estimates for the
[17] “Elliptic partial differential equations of second order”, Grundlehrer der Math. Wiss. Vol. 224, Springer-Verlag, New York, 1977. | MR | Zbl
- ,[18] “An Introduction to Complex Analysis in Several Variables”, Von Nostrand, Princeton, NJ, 1966. | MR | Zbl
,[19] Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171. | MR | Zbl
,[20] “Function Theory of Several Complex Variables”, Wiley, New York, 1982. | MR | Zbl
,[21] Smooth regularity for solutions of the Levi Monge-Ampère equation, to appear on Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 12 (2001), 115-123. | MR | Zbl
, ,[22] The Levi Monge-Ampère equation: smooth regularity of strictly Levi convex solutions, preprint.
- ,[23] Balls and metrics defined by vector fields I: basic properties, Acta Math. 155 (1985), 103-147. | MR | Zbl
- - ,[24] R. M. Range, “Holomorphic Functions and Integral Representation Formulas in Several Complex Variables, Springer-Verlag, New York, 1986. | MR | Zbl
[25] Hypoelliptic differential operators on nilpotent groups, Acta Math. 137 (1977), 247-320. | MR | Zbl
- ,[26] Fundamental solutions and geometry of the sum of squares of vector fields, Invent. Math. 78 (1984), 143-160. | MR | Zbl
,[27] The Levi equation in higher dimension and relationships to the envelope of holomorphy, Amer. J. Math. 116 (1994), 479-499. | MR | Zbl
- ,[28] Weak solutions for the Levi equation and Envelope of Holomorphy, J. Funct. Anal. 101, n. 4 (1991), 392-407. | MR | Zbl
- ,[29] “Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals”, Princeton university Press, Princeton, New Jersey 1993. | MR | Zbl
,[30] Geometric Properties of Solutions of the Levi equation, Ann. Mat. Pura Appl. 152 (4) (1988), 331-344. | MR | Zbl
,[31] Regularity for Quasilinear Second-Order Subelliptic Equations, Comm. Pure Appl. Math. 45 (1992), 77-96. | MR | Zbl
,