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Decomposition of CR-Manifolds and Splitting of CR-maps

ATSUSHI HAYASHIMOTO – SUNG-YEON KIM – DMITRI ZAITSEV

Abstract. We show the uniqueness of local and global decompositions of ab-
stract CR-manifolds into direct products of irreducible factors, and a splitting
property for their CR-diffeomorphisms into direct products with respect to these
decompositions. The assumptions on the manifolds are finite non-degeneracy and
finite-type on a dense subset. In the real-analytic case, these are the standard
assumptions that appear in many other questions. In the smooth case, the assump-
tions cannot be weakened by replacing “dense” with “open” as is demonstrated by
an example. An application to the cancellation problem is also given. The proof
is based on the development of methods of [BER99b], [BRZ00], [KZ01] and the
use of “approximate infinitesimal automorphisms” introduced in this paper.

Mathematics Subject Classification (2000): 32V05 (primary), 32V35, 32G07
(secondary).

1. – Introduction

Decompositions of various types of manifolds into direct products of sub-
manifolds play an important role in their study. For instance, for semisimple
Lie groups and for symmetric spaces, such decompositions are crucial for the
classification. In Riemannian geometry such a decomposition is known as de
Rham decomposition (see [KN96]). In all these cases the corresponding de-
composition is unique unless there are present so-called “flat factors” whose
classification is simple. Most geometric and functional-theoretic questions for
the manifolds then are reduced to the irreducible factors.

In this paper we study local decompositions of germs of (abstract) CR-
manifolds into irreducible factors as well as their global analogues and establish
their uniqueness. Here the role of “flat factors” is played by Levi-flat directions,
where, in general, “higher order Levi forms” have to be taken into account.
The simplest example is given by the Levi-flat manifold M = R × C where
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the choice of the direction of R is obviously not unique. There are different
known nondegeneracy conditions to exclude such phenomenon, most of them
are usually formulated for real-analytic CR-manifolds. Those that seem to be
the easiest to transfer to the smooth case and also the easiest to compute are
the condition of finite nondegeneracy (see [H83], [BHR96], [E98]) and of finite
type (in the sense of Kohn [K72] and Bloom-Graham [BG77]). We refer to
Section 2 for main definitions and mention here only that finite nondegeneracy
and finite type are implied respectively by the nondegeneracy of the Levi form
and by the condition that the span of all Levi form values is of maximal possible
dimension.

Our main result states that, in order to have the unique decomposition
property, it is sufficient to require finite nondegeneracy and finite type only on
a dense subset. In this paper “smooth” will always mean C∞. A germ of a
smooth CR-manifold is called irreducible, if it is not CR-diffeomorphic to a
direct product of two germs of smooth CR-manifolds of positive dimension.
We prove:

Thorem 1.1. Let (M, p) be a germ of a smooth CR-manifold which is finitely
nondegenerate and of finite type on a dense subset. Then, up to permutations, there
exists a unique decomposition

(M, p) ∼= (M1, p1) × · · · × (Mm, pm) ,

where each germ (Mj , pj ) is irreducible. Furthermore, if f is a (germ of a) smooth
local CR-diffeomorphism between (M, p) and another (germ of a) smooth CR-
manifold (M ′, p′)and if (M ′, p′) ∼= (M ′

1, p′
1)×· · ·×(M ′

m′, pm′) is the corresponding
decomposition into irreducible factors, then m = m ′ and, after a permutation of the
factors (M ′

j , p′
j ), f factors as a direct product of the form f = f 1 × · · · × f m,

where f j : (Mj , pj ) → (M ′
j , p′

j ) are (germs of ) local CR-diffeomorphisms for j =
1, . . . , m.

If M is real-analytic, the assumption of finite nondegeneracy on a dense
subset in Theorem 1.1 is equivalent to holomorphic nondegeneracy of its local
analytic CR-embedding, i.e. to the nonexistence of holomorphic local one-
parameter automorphism group (see [BER96], [BER99a]). This assumption is
optimal for points in general position in the following sense. If there is no
dense subset where M is finitely nondegenerate, then the existence of a local
one-parameter automorphism group implies that at a point of general position M
is locally CR-isomorphic to a product of C and another CR-manifold. In this
case it is easy to see that the decomposition in Theorem 1.1 at such a point is
never unique.

If, on the other hand, there is no dense subset where M is of finite type,
the situation is reduced to the finite type case by considering the CR-orbits
(see [N66], [S73], [BER99a]).

In case M is real-analytic, the assumptions in Theorem 1.1 are clearly
equivalent to M being finitely nondegenerate and of finite type at some sequence
of points converging to p. If M is merely smooth, the second condition is
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essentially weaker and is not sufficient for the conclusion of Theorem 1.1 to
hold as Example 2.1 below shows.

Our next result is the following global version of Theorem 1.1. Here we
call a CR-manifold (globally) irreducible if it is not CR-diffeomorphic to a
direct product of two smooth CR-manifolds of positive dimension.

Theorem 1.2. Let M be a smooth CR-manifold which is finitely nondegenerate
and of finite type on a dense subset. Then, up to permutations, there exists a unique
decomposition

M ∼= M1 × · · · × Mm ,

where each Mj is irreducible. Furthermore, if f is a smooth CR-diffeomorphism
between M and another smooth CR-manifold M ′ and if and M ′ ∼= M ′

1 × · · · × M ′
m′

is the corresponding decomposition, then m = m ′ and after a permutation of factors
of M ′, f factors as a direct product of the form f = f 1 × · · · × f m, where
f j : Mj → M ′

j are smooth CR-diffeomorphisms.

Again, also here Example 2.1 shows that the assumptions cannot be weak-
ened by replacing a dense subset by an open subset. As immediate applications
of Theorems 1.1 and 1.2 we obtain the following cancellation result:

Corollary 1.3. Let M1, M2 and S be CR-manifolds that are finitely non-
degenerate and of finite type on their dense subsets. If M1 × S and M2 × S are
CR-diffeomorphic, then M1 and M2 are also CR-diffeomorphic. Furthermore, if for
some points p1 ∈ M1, p2 ∈ M2, s ∈ S, (M1, p1) × (S, s) and (M2, p2) × (S, s) are
CR-diffeomorphic, then also (M1, p1) and (M2, p2) are CR-diffeomorphic.

A key ingredient of the proofs of Theorems 1.1 and 1.2 consists of es-
tablishing a rigidity property for local CR-diffeomorphisms (Proposition 4.1)
that roughly states that, under the assumptions of Theorem 1.1, any smooth
family of local diffeomorphisms that is CR in all arguments, is necessarily
constant. The proof of this fact is based on a realization of the space of in-
finitesimal CR-automorphisms as a totally real subspace in a suitable jet space.
For (not infinitesimal) CR-automorphisms of real-analytic CR-manifolds fixing
a reference point, such a realization has been obtained by Baouendi-Ebenfelt-
Rothschild [BER99b, Theorem 4]. The method of [BER99b] is based on the
local complexification of real-analytic CR-manifolds that may not exist for gen-
eral abstract CR-manifolds as in our case. In [KZ01] the second and the
third authors proposed a method of approximate local complexification used to
obtain jet parametrizations of local CR-automorphisms and even of local auto-
morphisms that are CR only up to some finite order. Using this method we
can reduce the problem to the real-analytic case but, as in [KZ01], after such a
reduction we have to consider not only infinitesimal CR-diffeomorphisms of the
corresponding submanifold M̃ ⊂ C

N but also more general holomorphic vector
fields that preserve M̃ only up to finite order (at the reference point). We call
these vector fields “approximate infinitesimal automorphisms”. In contrast to
usual infinitesimal automorphisms, the local flow of an approximate infinitesimal
automorphism may not consist even of approximate automorphisms since they
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may not send the reference point into a point of M̃ . Thus we cannot reduce the
problem to (not infinitesimal) automorphisms and instead adapt the technique
of [BER99b], [BRZ00], [KZ01] directly to our case.

An outline of the paper is as follows. In Section 2 we review basic facts and
definitions for CR-manifolds and give an example showing that the assumption
of finite nondegeneracy and of finite type in Theorems 1.1 and 1.2 cannot
be replaced by the same assumptions on a sequence of points. In Section 3
we define approximate infinitesimal automorphisms and establish their totally
real realizations in jet spaces. In Section 4 we prove the rigidity property for
local CR-automorphisms mentioned above. Finally, Section 5 and Section 6 are
devoted to the proofs of Theorems 1.1 and 1.2. The arguments in these parts
are partially inspired by [U81].

2. – Preliminaries and an example

Recall that an (abstract) smooth CR-manifold is a smooth manifold M
together with an involutive subbundle T 0,1 M of the complexified tangent bundle
T M ⊗ C such that T 0,1 M ∩ T 1,0 M = 0, where T 1,0 M = T 0,1 M . (Involutivity
means here that Lie brackets of vector fields in T 0,1 M are again in T 0,1 M .)
Instead of prescribing T 0,1 M one can also consider a real subbundle T c M
of T M together with a complex structure J on T c

p M for each p ∈ M depending
smoothly on p. The relation between T 0,1 M and (T c M, J ) is given by T 0,1 M =
{ξ + i Jξ : ξ ∈ T c M}. The reader is referred to the books [B91], [BER99a] for
basic properties of CR-manifolds.

A CR-manifold M is said to be of finite type at a point p (in the sense of
Kohn [K72] and Bloom-Graham [BG77]) if all vector fields in T 0,1 M and T 1,0 M
span together with their commutators the maximal possible space Tp M ⊗C. The
type ν of M at p is the minimal length of commutators needed to span the
maximal space. In this case we say that M is of type ν at p or (M, p) is of
type ν.

A CR-manifold M is called finitely nondegenerate at p (see [H83], [BHR96],
[E98] and also [BER99a, Section 11.1]) if, for some integer k ≥ 1,

(2.1)
span

C
{TLs (. . . TL2(TL1θ) . . . )(p) : 0 ≤ s

≤ k, L j ∈ �(T 0,1 M), θ ∈ �(T ∗0 M)} = T ∗1,0
p M ,

where T ∗0 M and T ∗1,0 M denote the bundles of complex 1-forms that vanish
on T c M × C and on T 0,1 M respectively and TL is the Lie derivative along L .
Recall that for any (0, 1) vector field L , the Lie derivative TL leaves the space
�(T ∗1,0 M) invariant and is given there by TLω = iLdω, where iL denotes the
contraction. If the number k is minimal with the above property, we say that M
is k-nondegenerate at p or (M, p) is k-nondegenerate.
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The following example shows that the conclusion of Theorem 1.1 may not
hold if (M, p) is only assumed to be finitely nondegenerate and of finite type
at a sequence of points converging to p.

Example 2.1. Let M0 ⊂ C
2
z,w be given by Im w = λ(Re w)zz, where

λ(x) is a smooth function on R that is zero for x ≤ 0 and positive for x > 0
and let M1 ⊂ C

2
z,w be the quadric Im w = zz. Then M := M0 × M1 is

finitely nondegenerate (even Levi-nondegenerate) and of finite type at every
point (0, x, a, b) ∈ M with x > 0. However, the obvious decomposition of
(M, 0) as (M0, 0) × (M1, 0) is not unique. Indeed, let ϕ be a smooth real
function on R that is one for x ≥ 0 and greater than one for x < 0. Then the
map

(z0, w0, z1, w1) �→ (z0, w0, ϕ(Re w0)z1, (ϕ(Re w0))
2w1)

defines a CR-automorphism of M that does not preserve the given splitting
M = M0 × M1.

3. – Approximate infinitesimal automorphisms

We begin by considering a germ (M, p) of a generic real-analytic subman-
ifold in C

N with a vector-valued defining function r = (r1, . . . , rd). Recall
that an infinitesimal automorphism of (M, p) in C

N is a germ at p of a holo-
morphic vector field L on C

N such that Re L is tangent to M , i.e. Re Lr = 0
on M . More generally, we introduce the notion of an approximate infinitesimal
automorphisms of a given order k. By definition, an approximate infinitesimal
automorphism of (M, p) of order k is a germ at p of a holomorphic vector field L
on C

N satisfying

Re Lr(x) = o(|x − p|k) as x ∈ M → p .

We denoted by autk(M, p) the vector space of all approximate infinitesimal
automorphisms of (M, p) of order k.

For a germ of a holomorphic map f at p ∈ C
N , denote by j k

p f its k-jet
at p. Also denote by J k

p (CN , C
N ) the k-th jet space of holomorphic self maps

of C
N at p. Our goal in this section is to prove the following property that

may be of independent interest:

Proposition 3.1. Let (M, p) be a germ of a real-analytic generic submanifold
in C

N of codimension d. Suppose (M, p) is l-nondegenerate and of type ν. Then for
any k ≥ (2d(ν −1)+2)(2d +3)l, the image of autk(M, p) under the jet evaluation
map

j (2d+3)l
p : autk(M, p) → J (2d+3)l

p (CN , C
N )

is a totally real linear subspace of J (2d+3)l
p (CN , C

N ).
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Proof. Without loss of generality we may assume p = 0. Let L :=∑
j ξ j ∂

∂zj
∈ autk(M, p) be an approximate infinitesimal automorphism and let

{θt : t ∈ (−ε, ε)} be its local flow defined in a neighborhood of 0 in C
N . Since

L is holomorphic, θt (z) is holomorphic in z and real-analytic in t . Consider
the power series expansion

θt (z) =
∑
j≥0


j (z)t
j

of θt (z) with respect to t , where 
j : C
N → C

N is the germ of a holomorphic
map at 0. Then 
0 = id and 
1 = (ξ 1, . . . , ξ N ).

Now let r(z, z) = (r1(z, z), . . . , rd(z, z)) be a real-analytic defining function
of (M, p) and let

h(z, z, t) := r(θt (z), θt (z)) .

Consider the power series expansion

h(z, z, t) =
∑
j≥0

hj (z, z)t j

of h with respect to t . Since

r(θt (z), θt (z)) = r(z, z) + 2t Re Lr(z, z) + o(|t |) as t → 0 ,

we have h0 ≡ 0 on M and h1(z, z) = o(|z|k) as z → 0 in M by the as-
sumptions. Then, by the standard complexification argument, we obtain on the
complexification M := {(z, ζ ) ∈ U × U : r(z, ζ ) = 0} of M , where U is a
sufficiently small neighborhood of 0 in C

N ,

(3.1) r(θt (z), θ t(ζ )) = h(z, ζ, t) =
∑
j≥1

hj (z, ζ )t j

such that
h1(z, ζ ) = o(|(z, ζ )|k) as (z, ζ ) ∈ M → 0 .

Choose a linear basis of real-analytic (0, 1) vector fields L1, . . . , Ln , on M
near 0, where n = N − d. By a slight abuse of notation we write the same
letters for their complexifications on M. For a multi-index α = (α1, . . . , αn),
write |α| := α1+· · ·+αn and Lα := L

α1
1 · · · Lαn

n . Since M is l-nondegenerate and
θt is invertible at 0, we have near 0 the following span condition (see [BER99a,
Proposition 11.2.4])

span{Lαrm
z (θt (z), θt (z)) : 1 ≤ m ≤ d, |α| ≤ l} = C

N ,

where rm
z := ( ∂rm

∂z1
, . . . , ∂rm

∂zN
) ∈ C

N is the gradient of the mth component of r .
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Then by applying the operators Lα for |α| ≤ l to (3.1) and using the implicit
function theorem, we obtain as in [KZ01, Section 4.1] the basic reflection
identity

(3.2) θt (z) = (z, ζ, j l
ζ θ t ) + h0(z, ζ, t), (z, ζ ) ∈ M ,

where  is a holomorphic map defined in a neighborhood of (0, 0, j l
0 id) in

C
N × J l(CN , C

N ) which is independent of θt , and h0 = ∑
j≥1 h0

j (z, ζ )t j is a
holomorphic map (depending on θt ) defined in a neighborhood of 0 in C

N ×
C

N × (−ε, ε) such that

h0
1(z, ζ ) = o(|(z, ζ )|k−l) as (z, ζ ) ∈ M → 0 .

Moreover, differentiating (3.2) in z, we obtain for τ ≤ k − l,

(3.3) j τ
z θt = τ(z, ζ, j τ+l

ζ θ t ) + hτ (z, ζ, t), (z, ζ ) ∈ M ,

where hτ (z, ζ, t) = ∑
j≥1 hτ

j (z, ζ )t j is a holomorphic map satisfying

hτ
1(z, ζ ) = o(|(z, ζ )|k−(l+τ)) as (z, ζ ) ∈ M → 0 .

For every positive integer µ, define the iterated complexification Mµ of order µ

as follows (see [Z97], [Z99], [KZ01]). Let Mµ be the connected component
of {(ζµ, . . . , ζ 1, ζ 0) ∈ C

(µ+1)N : rj (ζ
j , ζ j−1) = 0, j = 1, . . . , µ} containing 0,

where

rj (ζ
j , ζ j−1) :=

{
r(ζ j , ζ j−1) if j is odd,

r(ζ j , ζ j−1) if j is even.

Then by iterating (3.3) 2d + 3 times and evaluating at ζ 0 = 0, we obtain

θt (z) = ̂(z,B, j (2d+3)l
0 θ t ) + ĥ(z,B, t), (z,B) ∈ M2d+3 ∩ {ζ 0 = 0} ,

where ̂ is independent of θt ,B=(ζ 2d+2, . . . , ζ 0) and ĥ(z,B, t)=∑
j≥1 ĥ j (z,B)t j

is such that

ĥ1(z,B) = o(|(z,B)|k−(2d+3)l), (z,B) ∈ M2d+3 ∩ {ζ 0 = 0} → 0 .

Since M is of type ν, by similar arguments as in [KZ01, Secion 4.2], we obtain
a singular jet parametrization

θt (z) = ̌

(
λ,

z

λm
, j (2d+3)l

0 θ t

)
+ ȟ

(
λ,

z

λm
, t

)

for some integer m ≤ 2d(ν − 1), where λ ∈ C, ̌ is a holomorphic map in
a neighborhood of (0, 0, j (2d+3)l

0 id) in C × C
N × J (2d+3)l

0 (CN , C
N ) independent
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of θt and ȟ(λ, z̃, t) = ∑
j≥1 ȟ j (λ, z̃)t j is a holomorphic map in a neighborhood

of 0 in C × C
N × (−ε, ε) such that

ȟ1(λ, z̃) = o(|(λ, z̃)|k−(2d+3)l) as (λ, z̃) → 0 .

Then by [KZ01, Lemma 4.4], we have

(3.4) θt (z) = �(z, j (2d+3)l
0 θ t ) + h̃(z, t) ,

where � is a holomorphic map in a neighborhood of (0, j (2d+3)l id) in C
N ×

J (2d+3)l
0 (CN , C

N ) and h̃(z, t) = ∑
j≥1 h̃ j (z)t j is a holomorphic map in a neigh-

borhood of 0 in C
N × (−ε, ε) such that

h̃1(z) = o(|z| k−(2d+3)l
m+1 ) as z ∈ C

N → 0 .

We differentiate (3.4) in t at t = 0 to obtain a jet parametrization

(3.5) ξ(z) = �̂(z, j (2d+3)l
0 ξ) + o(|z| k−(2d+3)l

m+1 ) as z ∈ C
N → 0 ,

where ξ := (ξ 1, . . . , ξ N ) denote the components of the original infinitesimal
automorphism L . Since m ≤ 2d(ν − 1) and

k ≥ (2d(ν − 1) + 2)(2d + 3)l ≥ (m + 2)(2d + 3)l ,

differentiation of (3.5) (2d + 3)l times in z at z = 0 yields

j (2d+3)l
0 ξ = �̌( j (2d+3)l

0 ξ) ,

where �̌ is a holomorphic map in a neighborhood of j (2d+3)l
0 id in J (2d+3)l

0

(CN , C
N ). Hence we have ζ = �̌(ζ̄ ) for any ζ ∈ j (2d+3)l

0 ( autk(M, p)) and
therefore j (2d+3)l

0 ( autk(M, p)) ⊂ J (2d+3)l
0 (CN , C

N ) is totally real.

4. – Rigidity properties of CR-families of automorphisms

Our next step in proving Theorems 1.1 and 1.2 consists of establishing
rigidity properties for local CR-families of automorphisms given as germs of
smooth CR-maps ϕ: (S, a) × (M, p) → (M, p), where (S, a) and (M, p) are
CR-manifolds. By rigidity here we mean the following property:

Proposition 4.1. Let (S, a) and (M, p) be germs of smooth CR-manifolds that
are finitely nondegenerate and of finite type on dense subsets. If ϕ: (S, a)×(M, p) →
(M, p) is a germ of a smooth CR-map such that ϕ(a, ·) = id, then ϕ(s, ·) = id for
all s ∈ S sufficiently close to a.
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In fact, it will follow from the proof that the same conclusion holds un-
der the weaker assumption that (S, a) is only minimal (in the sense of Tu-
manov [T88]) on a dense subset.

Proof. Let d be the CR-codimension of (M, p), i.e. the codimension of
the complex tangent space T c

p M in Tp M . We first assume that M is finitely
nondegenerate and of finite type at p (and not only on a dense subset). Choose l
such that M is l-nondegenerate at p. It is shown in [KZ01] that, for any
invertible jet (p, λ) ∈ J 2(d+1)l(M, M), there exists a J 2(d+1)l+1(M, M)-valued
smooth function � defined in a neighborhood of (p, λ) such that all germs
of smooth CR-diffeomorphisms f : M → M at any q ∈ M with (q, j2(d+1)l

q f )

sufficiently close to (p, λ), satisfy a complete differential system

j2(d+1)l+1
x f = �(x, j2(d+1)l

x f )

for x sufficiently close to q .
Now choose X ∈ aut(M, p) and let {θt : t ∈ (−ε, ε)} be its local flow.

Then there is a neighborhood U of p in M such that for all t ∈ (−ε, ε), θt is
well-defined in U and satisfies

(4.1) j2(d+1)l+1
x θt = �(x, j2(d+1)l

x θt )

for all x ∈ U . By differentiating (4.1) in t at t = 0, we obtain a complete
differential system

j2(d+1)l+1
x X = (x, j2(d+1)l

x X), x ∈ U

for X , where  is a J 2(d+1)l+1(M, T M)-valued smooth function defined in a
neighborhood of (p, j2(d+1)l

p X) in the space J 2(d+1)l(M, T M) of 2(d + 1)l-jets
of vector fields on M . As a consequence, we obtain finite jet determination
for infinitesimal CR-automorphisms: if X, Y ∈ aut(M, p) and j2(d+1)l

p X =
j2(d+1)l
p Y , then X ≡ Y .

Let ϕ: (S, a) × (M, p) → (M, p) be a germ of a CR-map satisfying the
assumptions of the Proposition 4.1. For any (1, 0) vector field L on S in a
neighborhood of a such that L(a) �= 0, define one-parameter families {θt : t ∈
(−ε, ε)} and {ηt : t ∈ (−ε, ε)} of local CR-diffeomorphisms of M by

θt (x) := ϕ(σ1(t), x), ηt (x) := ϕ(σ2(t), x) ,

where σ1 and σ2 are the integral curves of Re L and Im L , respectively such that
σ1(0) = σ2(0) = a. Therefore θ̇0 and η̇0 are infinitesimal CR-automorphisms,
where the dot denotes the derivative in t . Moreover, by the definition of θt

and ηt , we have θ̇0, η̇0 ∈ �(M, T c M). On the other hand,

η̇0 = ϕ∗(σ̇2(0), x) = ϕ∗( Im L(a), x) = Jϕ∗(Re L(a), x) = J θ̇0 ,

where J is the complex structure on T c M . Hence we obtain an infinitesimal au-
tomorphism X := θ̇0 ∈ aut(M, p)∩�(M, T c M) such that also J X ∈ aut(M, p).
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Now set k := (2d(ν −1)+2)(2d +3)l as in Proposition 3.1, where ν is the
type of M at p. By [KZ01, Proposition 3.1], we can choose a neighborhood U
of p and a smooth embedding ψ : U → C

n+d , n = dimC R M , which is CR
of order k + 1 at p, i.e. for any (0, 1) vector field L on M defined near p,
Lψ(x) = o(|x − p|k) as x → p, and such that ψ(p) = 0 and ψ(U ) is a generic
real-analytic submanifold of codimension d.

We write ψ∗(X) = Re
∑n+d

j=1 ξ j ∂
∂zj

. Since ψ is CR of order k + 1 at p, it

follows that each ξ j is CR of order k at 0. Therefore we can choose a holo-
morphic vector field

∑n+d
j=1 ξ̃ j ∂

∂zj
∈ autk(ψ(M), 0) such that j k

0 (ξ 1, . . . , ξ n+d) =
j k
0 (ξ̃ 1, . . . , ξ̃ n+d). Define j : aut(M, p) → J (2d+3)l

0 (Cn+d , C
n+d) by

j (X) := j (2d+3)l
0 (ξ̃ 1, . . . , ξ̃ n+d) .

Then by the finite jet determination in aut(M, p) mentioned above and by
Proposition 3.1, j is injective and the image j ( aut(M,p))⊂ J (2d+3)l

0 (Cn+d ,Cn+d)

is a totally real linear subspace. Moreover, since ψ is CR of order k + 1 at p,
for any X ∈ aut(M, p) ∩ �p(M, T c M) we have

ϕ∗(J X) = Jϕ∗(X) + o(|x − p|k) , x ∈ M → p ,

and therefore j (J X) = J ( j (X)) since J X ∈ aut(M, p). Since j ( aut(M, p))

is totally real and j is injective, this implies X ≡ 0. In the above notation
this means θ̇0(x) ≡ 0 or equivalently ϕ∗(Re L(a), x) = 0. A similar argument
applied to ϕb(s, x) := ϕ−1

b (ϕ(s, x)) for ϕb := ϕ(b, ·) and b ∈ S sufficiently close
to a shows that ϕ∗(Re L(b), x) = 0. Since L is an arbitrary (1, 0) vector field
on S, it follows that also ϕ∗(L , x) = ϕ∗(L, x) = 0. Since (S, a) is of finite
type, this implies that ϕ(·, x) is constant for every x ∈ M (sufficiently close
to p). (If (S, a) is merely minimal, the same conclusion follows by observing
that ϕ(·, x) is constant along CR-curves on S.) Hence we obtain the required
conclusion in the case M is finitely nondegenerate and of finite type at p.

To prove the statement in the general case, suppose that the conclusion
does not hold for a germ of a smooth CR-map ϕ: (S, a) × (M, p) → (M, p).
Then the partial derivative ∂sϕ(s, x) does not vanish at points arbitrary close
to (a, p). On the other hand, the above argument implies that the derivative
is zero near all minimal points of S that are sufficiently close to a. By the
assumption, the minimal points are dense, and hence we reach a contradiction.
The proof is complete.

5. – Local splitting of CR-maps; proof of Theorem 1.1

In this section we prove Theorem 1.1. Let (M, p) be as in Theorem 1.1
and fix a decomposition into irreducible factors

(M, p) ∼= (M1, p1) × · · · × (Mm, pm) .
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It is clear that such a decomposition always exists but a priori may not be
unique. Let (M ′, p′) be another CR-manifold and

(5.1) (M ′, p′) ∼= (M ′
1, p′

1) × · · · × (M ′
m′, p′

m′)

be a corresponding decomposition. Define

(M̃, p̃) := (M1, p1) × · · · × (Mm−1, pm−1) .

Since M is finitely nondegenerate and of finite type on a dense subset, it follows
directly from the definition that the same holds for M̃ and Mm .

Now let f = ( f 1, . . . , f m′
) be a germ of a smooth CR-diffeomorphism

between (M, p) and (M ′, p′), where f j is the j th component with respect
to the decomposition (5.1). We fix connected representatives for all germs of
CR-manifolds and denote them by the same letters. We may then assume that
f maps M = M1 × · · · × Mm diffeomorphically onto an open connected subset
U ′ ⊂ M ′ = M ′

1 × · · · × M ′
m′ . For an open subset Um ⊂ Mm , define the subsets

U ′
j := f j ({ p̃} × Um) ⊂ M ′

j . We also write f −1 = (g1, . . . , gm): U ′ → M .

Lemma 5.1. If Um ⊂ Mm is a sufficiently small neighborhood of pm, one has
�m′

j=1U ′
j ⊂ f ({ p̃} × Mm).

Proof. By the construction,

f ({ p̃} × Um) = {( f 1( p̃, v), · · · , f m′
( p̃, v)) : v ∈ Um} ⊂ �m′

j=1U ′
j .

Let
π : (Mm, pm) × · · · × (Mm, pm)︸ ︷︷ ︸

m′
×(M̃, p̃) → (M̃, p̃)

be the germ given by

π(v1, . . . , vm′
, z) :

= (g1( f 1(z, v1), . . . , f m′
(z, vm′

)), . . . , gm−1( f 1(z, v1), . . . , f m′
(z, vm′

))) ,

where z ∈ M̃ and v j ∈ Mm for 1 ≤ j ≤ m ′. Then π(v, . . . , v, z) ≡ z holds for
(z, v) ∈ M near p. By Proposition 4.1, we conclude that π(v1, . . . , vm′

, z) ≡ z
for (v1, . . . , vm′

) ∈ Mm × · · · × Mm near (pm, . . . , pm) and for z ∈ M̃ near p̃.
This implies f −1( f 1( p̃, v1), . . . , f m′

( p̃, vm′
)) ∈ { p̃}× Mm for all v1, . . . , vm′ ∈

Mm near pm and the lemma follows.

We need the following standard lemma proven here for the convenience of
the reader.

Lemma 5.2. Let S ⊂ R
n1 × R

n2 be a smooth submanifold. Denote by πj : S →
R

nj , j = 1, 2, the canonical projections. Suppose that, for an open subset U ⊂ S,
π1(U )×π2(U ) ⊂ S. Then for any p ∈ U and any sufficiently small neighborhood �

of p in U, πj (�) is a submanifold of R
nj for j = 1, 2, and� is open inπ1(�)×π2(�).
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Proof. The inclusion π1(U ) × π2(U ) ⊂ S implies dπ1(Tp S) × dπ2(Tp S) ⊂
Tp S for every p ∈ U and therefore dπ1(Tp S) × dπ2(Tp S) = Tp S. By the semi-
continuity of the dimension of each dπj (Tp S), j = 1, 2, with respect to p, we
conclude that both dimensions are constant and therefore both π1 and π2 are of
constant rank on U . The required statement follows from the rank theorem.

In our situation each U ′
j is a subset of M ′

j for all j = 1, . . . , m ′, such that
the product U ′

1 ×· · ·×U ′
m′ is contained in a smooth submanifold that is locally

CR-equivalent to Mm by Lemma 5.1. Hence it follows from Lemma 5.2 that,
if the neighborhood Um of pm in Mm is chosen sufficiently small, each U ′

j is
a smooth submanifold of M ′. Moreover, Um is a CR-submanifold of M in
the sense that its tangent subspace intersects the complex tangent space of M
along complex subspaces of constant dimension. Then, U ′

1 ×· · ·×U ′
m′ is a CR-

submanifold of M ′ by Lemma 5.1 and hence each U ′
j ⊂ M ′

j is a CR-submanifold.
We obtain a decomposition of (Mm, pm) ∼= (U ′

1, p′
1) × · · · × (U ′

m′, p′
m′) into

a product of germs of smooth CR-submanifolds. Since, however, (Mm, pm)

was chosen to be irreducible, it is CR-equivalent to (U ′
j , p′

j ) for some j ∈
{1, . . . , m ′}. Without loss of generality, j = m ′. Then the other factors U ′

j are

zero-dimensional. We conclude that f 1( p̃, ·), . . . , f m′−1( p̃, ·) are constant near
pm and that f m′

( p̃, ·): (Mm, pm) → (M ′
m′, p′

m′) defines a CR-equivalence. By
Proposition 4.1, we obtain:

Lemma 5.3. For z ∈ M̃ sufficiently close to p̃, one has f m′
(z, ·) ≡ f m′

( p̃, ·).
Lemma 5.4. Set f̃ := ( f 1, . . . , f m′−1), M̃ ′ := ∏m′−1

j=1 M ′
j and p̃′ :=

(p′
1, . . . , p′

m′−1) ∈ M̃ ′. Then

(i) f̃ (·, pm): (M̃, p̃) → (M̃ ′, p̃′) is a CR-diffeomorphism;
(ii) for any zm ∈ Mm sufficiently close to pm, one has f̃ (·, zm) ≡ f̃ (·, pm).

From Lemmata 5.3 and 5.4 we conclude that f splits into the product f =
h̃×hm with h̃ := f̃ (·, pm): (M̃, p̃) → (M̃ ′, p̃′) and hm := f m′

( p̃, ·): (Mm, pm) →
(M ′

m′, p′
m′). The proof of Theorem 1.1 is completed by induction on m.

6. – Global splitting of CR-maps; proof of Theorem 1.2

We now turn to the proof of the global decomposition result stated in
Theorem 1.2. Let M and f : M → M ′ be as in Corollary 1.2. Without loss of
generality we may assume that M is connected. Fix decompositions

M ∼= M1 × · · · × Mm, M ′ ∼= M ′
1 × · · · × M ′

m′

into irreducible factors and write f = ( f 1, . . . , f m′
), where f i is the i-th

component of f .
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For any point (p1, . . . , pm) ∈ M , pi ∈ Mi , decompose

(Mi , pi ) = (Mi,1, pi,1) × · · · × (Mi,si , pi,si )

and
(M ′

i , p′
i ) = (M ′

i,1, p′
i,1) × · · · × (M ′

i,ri
, p′

i,ri
)

into local irreducible factors, where p′
i := f i (p) and let π ′

j,r be the canonical
projection of M ′

j to M ′
j,r defined in a small neighborhood of p′

j , where M ′
j,r is

a representative of (M ′
j,r , p′

j,r ).
Now assume that

dim Mm = max(dim M1, . . . , dim Mm, dim M ′
1, . . . , dim Mm′) .

Fix p̃ := (p1, . . . , pm−1) ∈ M̃ := M1 × · · · × Mm−1. By Theorem 1.1, the
germ f : (M, p) → (M ′, p′) can be written as a product of germs of CR-
diffeomorphisms f i,s : (Mi,s, pi,s) → (M ′

ji,s ,ri,s
, p′

ji,s ,ri,s
). Hence there exists ar-

bitrarily small connected open neighborhood � of pm in Mm such that

f ({ p̃} × �) = f 1({ p̃} × �) × · · · × f m′
({ p̃} × �) .

Moreover we can choose � so that for each j , j = 1, . . . , m ′, h j,r :=
π ′

j,r ( f j ( p̃, ·)) is well-defined in �,

f j ({ p̃} × �) = h j,1(�) × · · · × h j,rj (�)

and there exists a subset Aj ⊂ {1, . . . , rj } such that h j,r is constant if r ∈ Aj

and of maximal rank at every point of � if r �∈ Aj .
We claim that

(6.1) f ({ p̃} × Mm) = f 1({ p̃} × Mm) × · · · × f m′
({ p̃} × Mm) .

Indeed, set

(6.2)

G := {(x1, . . . , xm′) ∈ Mm × · · · × Mm︸ ︷︷ ︸
m′

: ( f 1( p̃, x1), . . . ,

f m′
( p̃, xm′)) ∈ f ({ p̃} × Mm)} .

For any x ∈ Mm , we can choose a neighborhood �x ⊂ Mm of x such that

f ({ p̃} × �x) = f 1({ p̃} × �x) × · · · × f m′
({ p̃} × �x) .
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Therefore (x, . . . , x︸ ︷︷ ︸
m′

) is an interior point of G. Let Gx be the maximal

connected open set consisting of interior points of G containing (x, . . . , x) and
let Gx be its closure in Mm × · · · × Mm . Then by continuity of f , Gx is again
a subset of G.

Choose any (x1, . . . , xm′) ∈ Gx . Then by (6.2), there is a point pm ∈ Mm

such that f ( p̃, pm) = ( f 1( p̃, x1), . . . , f m′
( p̃, xm′)). Let � and A1 be as above

and choose a connected neighborhood �1 of x1 in Mm such that in �1, h1,r is
well-defined for all r = 1, . . . , r1,

f 1({ p̃} × �1) = h1,1({ p̃} × �1) × · · · × h1,r1({ p̃} × �1)

and there exists a subset B ⊂ {1, . . . , r1} such that h1,r is constant if r ∈ B
and of maximal rank at every point of �1 otherwise.

Since (x1, . . . , xm′) ∈ Gx and f ({ p̃} × Mm) ⊂ M ′ is a locally closed
submanifold, there exist an open subset V ⊂ �1 and a point (y2, . . . , ym′) ∈
Mm × · · · × Mm︸ ︷︷ ︸

m′−1

arbitrarily close to (x2, . . . , xm′) such that

f 1({ p̃} × V ) × f 2( p̃, y2) × · · · × f m′
( p̃, ym) ⊂ f ({ p̃} × �) .

Then h1,r is constant in V for r ∈ A1. Since V is an open subset of �1
and h1,r is of maximal rank at every point of �1 if r �∈ B, this implies
A1 ⊂ B. Therefore h1,r (y) = h1,r (pm) for all y ∈ �1 if r ∈ A1 and hence
f 1({ p̃} × �1) ⊂ f 1({ p̃} × �) if �1 is sufficiently small.

By the same argument as above we can choose neighborhoods �j ⊂ Mm

of xj , j = 2, . . . , m ′, such that f j ({ p̃} × �j ) ⊂ f j ({ p̃} × �) or equivalently

f 1({ p̃} × �1) × · · · × f m′
({ p̃} × �m′) ⊂ f ({ p̃} × �) .

Then (x1, . . . , xm′) is an interior point of Gx . Since Mm × · · · × Mm is a
connected set, this implies Gx = Mm × · · · × Mm .

Now we have f ({ p̃}× Mm) = f 1({ p̃}× Mm)×· · ·× f m′
({ p̃}× Mm). Since,

by the local splitting property of f proven in Theorem 1.1, each f j ( p̃, ·) is
of constant rank, this implies that f j ({ p̃} × Mm) is a closed CR-submanifold
of M ′

j . Since Mm is irreducible in the sense of Corollary 1.2, we may assume
that f j ({ p̃}× Mm) is of zero dimension if j �= m ′ and Mm is CR-diffeomorphic
to f m′

({ p̃} × Mm). Since Mm is of maximal dimension among the irreducible
factors of M and M ′, this implies f m′

({ p̃} × Mm) is an open subset of M ′
m′ .

Since f m′
({ p̃} × Mm) is also closed in M ′

m′ and M ′
m′ is connected, we have

f m′
({ p̃}× Mm) = M ′

m′ . Then by local splitting property of f we can show that

for any (q, x) ∈ M , q ∈ M̃ , x ∈ Mm , sufficiently close to ( p̃, pm), we have
f̃ (q, x) = f̃ (q, pm) and f m′

(q, x) = f m′
( p̃, x), where f̃ := ( f 1, . . . , f m′−1).
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Since ( p̃, pm) is arbitrary and M is connected, f can be written as a
product of two CR-diffeomorphisms f̂ : M̃ → M̃ ′, and ĝ: Mm → M ′

m′ , where

M̃ ′ := M ′
1 × · · ·× M ′

m′−1. The proof of Theorem 1.2 is completed by induction
on m.
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