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Asymptotic Formula for Solutions to the Dirichlet
Problem for Elliptic Equations with Discontinuous

Coefficients Near the Boundary

VLADIMIR KOZLOV – VLADIMIR MAZ’YA

Abstract. We derive an asymptotic formula of a new type for variational solutions
of the Dirichlet problem for elliptic equations of arbitrary order. The only a priori
assumption on the coefficients of the principal part of the equation is the smallness
of the local oscillation near the point.
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1. – Introduction

In the present paper, we consider solutions to the Dirichlet problem for
arbitrary even order 2m strongly elliptic equations in divergence form near a
point O at the smooth boundary. We require only that the coefficients of the
principal part of the operator have small oscillation near this point and the co-
efficients in lower order terms are allowed to have singularities at the boundary.
It is well known that under such conditions, any variational solution belongs
to the Sobolev space W m,p with sufficiently large p (see [ADN] and [GT]).
Our objective is to prove an explicit asymptotic formula for such a solution
near O. Formulae of this type did not appear in the literature so far even for
equations of second order. The approach we use is new and may have various
other applications.

To give an idea of our results we consider the uniformly elliptic equation

(1) − div(A(x) grad u(x)) = f (x) in G

complemented by the Dirichlet condition

(2) u = 0 on ∂G ,

where G is a domain in R
n with smooth boundary. We assume that the elements

of the n×n-matrix A(x) are measurable and bounded complex-valued functions.
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We deal with a solution u having a finite Dirichlet integral and assume, for
simplicity, that f = 0 in a certain δ-neighborhood Gδ = {x ∈ G : |x | < δ} of
the origin. We suppose that there exists a constant symmetric matrix A with
positive definite real part such that the function

�(r) := sup
Gr

||A(x) − A||

is sufficiently small for r < δ. We also need the function

(3) Q(x) = 〈(A(x) − A)ν, ν〉 − n〈A−1(A(x) − A)ν, x〉〈ν, x〉〈A−1x, x〉−1

|Sn−1|(det A)1/2〈A−1x, x〉n/2
,

where 〈z, ζ 〉 = z1ζ1 + . . . + znζn and ν is the interior unit normal at O. (For
the notation (det A)1/2 and 〈A−1x, x〉n/2 see [H], Section 6.2.)

The following asymptotic formula is a very special corollary of our main
Theorem 1 which is formulated in Section 4

(4)

u(x) = exp

(
−

∫
Gδ\G|x |

Q(y)dy + O
(∫ δ

|x |
�(ρ)2 dρ

ρ

))

×
(

C
(

dist(x, ∂G) + O
(

|x |2−ε

∫ δ

|x |
�(ρ)

dρ

ρ2−ε

)))
+ O(|x |2−ε) ,

where C = const and ε is a small positive number.
It a simple matter to derive from (4) sharp two-sided estimate for the Hölder

exponent of u at the origin. Another direct application of (4) is the following
criterion. Under the condition

(5)
∫ δ

0
�(ρ)2 dρ

ρ
< ∞

all solutions u are Lipschitz at the origin if and only if

lim inf
r→+0

∫
Gδ\Gr

�Qdx > −∞ .

Needless to say, this new one-sided restriction (6) is weaker that the classical
Dini condition at the origin. The complementary assumption (5) appeared pre-
viously in several papers dealing with other problems of the boundary behavior
of solutions to equation (1) (see [FJK], [Dahl], [Ken] et al).

Let us turn now to another particular case of our main result which is
of independent interest and illustrates how lower order terms in the equation
influence the boundary behavior of solutions. Consider a solution u of the
magnetic Schrödinger equation

(i grad + �M(x))2u − P(x)u = 0 on B+
δ ,
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where B+
δ = R

n
+ ∩ Bδ , R

n
+ = {x = (x ′, xn) ∈ R

n : xn > 0} and Bδ = {x ∈ R
n :

|x | < δ}. Let u vanish on the hyperplane xn = 0 and have a finite Dirichlet
integral. Further let us assume that

(7)
∫ δ

0
sup
|y|<ρ

(yn| �M(y)| + y2
n |P(y)|)2 dρ

ρ
< ∞ .

From Theorem 1, one readily deduces the asymptotic representation

u(x)=exp


−�(n/2)

2πn/2

∫
|x |<|y|<δ

(
P(y) − | �M(y)|2− n( �M(y),y)

|y|2 i

)
y2

n dy

|y|n


(

Cxn+o(|x |))

which shows that the magnetic vector potential induces fast oscillations near
the origin while the electric potential influences only their amplitude. Under
condition (7), all solutions u are Lipschitz at the origin if and only if

lim inf
r→+0

∫
r<|y|<δ

(P(y) − | �M(y)|2) y2
n dy

|y|n > −∞ .

In Theorem 1 we obtain a general asymptotic formula of the same nature for
a variational solution of the uniformly strongly elliptic equation with complex-
valued measurable coefficients

(8)
∑

0≤|α|,|β|≤m

(−∂x)
α(Lαβ(x)∂β

x u(x)) = f (x) on B+
δ

complemented by zero Dirichlet data on the boundary xn = 0. Here and
elsewhere by ∂x we mean the vector of partial derivatives (∂x1, . . . , ∂xn ). The
only a priori assumption on the coefficients Lαβ is a smallness of the function

∑
|α|=|β|=m

|Lαβ(x) − Lαβ | +
∑

|α+β|<2m

x2m−|α+β|
n |Lαβ(x)| ,

where x ∈ B+
δ and Lαβ are constants.

Actually the whole present paper deals with the proof of Theorem 1. We
outline the idea of our argument. Equation (8) is transformed to a first-order
evolution system with the matrix whose entries are partial differential opera-
tors on the hemisphere with time dependent coefficients. Thus, the question
of asymptotics of solutions to the original Dirichlet problem is reduced to the
study of the long-time behavior of solutions of the evolution system just men-
tioned. The structure of the operator matrix in the system is rather complicated,
because it has been obtained from a higher order partial differential equation in
the variational form. Moreover, the study of this system is aggravated by the
scantiness of information about the behavior of the operator matrix at infinity.
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We overcome these difficulties by a right choice of function spaces, character-
izing the solutions and the right-hand side of the evolution system by certain
seminorms depending on time. To obtain an asymptotic formula for the solution
we apply a particular spectral splitting of the system into one-dimensional and
infinite-dimensional parts.

We only briefly discuss applications of Theorem 1 to keep the length of the
paper reasonable. One important area is the asymptotical analysis of solutions
near non-smooth boundaries (see [KM2] and [KM3]). We hope to treat this
topic in detail in a subsequent publication.

2. – Function spaces

Let 1 < p < ∞ and let W m,p
loc (Rn+ \ O) denote the space of functions u

defined on R
n
+ and such that ηu ∈ W m,p(Rn

+) for all smooth η with compact

support in Rn \ O. Also let
◦

W m,p
loc (Rn+ \ O) be the subspace of W m,p

loc (Rn+ \ O),
which contains functions subject to

(9) ∂k
xn

u = 0 on ∂R
n
+ \ O for k = 0, . . . , m − 1 .

We introduce a family of seminorms in
◦

W m,p
loc (Rn+ \ O) by

M
m
p (u; Kar,br ) =

(
m∑

k=0

∫
Kar,br

|∇ku(x)|p|x |pk−ndx

)1/p

, r > 0 ,

where Kρ,r = {x ∈ R
n
+ : ρ < |x | < r}, a and b are positive constants,

a < b and ∇ku is the vector {∂α
x u}|α|=k . One can easily see that (9) implies

the equivalence of Mm
p (u; Kar,br ) and the seminorm

(∫
Kar,br

|∇mu(x)|p|x |pm−ndx

)1/p

.

With another choice of a and b we arrive at an equivalent family of seminorms.
Clearly,

(11) M
m
p (u; Ka′r,b′r ) ≤ c1(a, b, a′, b′)

∫ b′r/a

a′r/b
M

m
p (u; Kaρ,bρ)

dρ

ρ
,

where c1 is a continuous function of its arguments.

We say that a function v belongs to the space
◦

W m,q
comp(R

n+\O), pq = p+q , if

v ∈ ◦
W m,q

loc (Rn+ \O) and v has a compact support in R
n+ \O. By W −m,p

loc (Rn+ \O)



ASYMPTOTIC FORMULA FOR SOLUTIONS 555

we denote the dual of
◦

W m,q
comp(R

n+ \ O) with respect to the inner product in

L2(Rn
+). We supply W −m,p

loc (Rn+ \ O) with the seminorms

(12) M
−m
p ( f ; Kar,br ) = sup

∣∣∣∣∣
∫

R
n+

f v |x |−ndx

∣∣∣∣∣ ,

where the supremum is taken over all functions v ∈ ◦
W m,q

comp(R
n+ \ O) supported

by ar ≤ |x | ≤ br and such that Mm
p (v; Kar,br ) ≤ 1. By a standard argument it

follows from (11) that

(13) M
−m
p ( f ; Ka′r,b′r ) ≤ c2(a, b, a′b′)

∫ b′r/a

a′r/b
M

−m
p ( f ; Kaρ,bρ)

dρ

ρ
,

where c2 depends continuously on its arguments.

3. – Statement of the Dirichlet problem in R
n
+

We consider the Dirichlet problem

L(x, ∂x)u = f (x) in R
n
+ ,(14)

∂k
xn

u
∣∣
xn=0 = 0 for k = 0, 1, . . . , m − 1 on R

n−1 \ O(15)

for the differential operator

(16) L(x, ∂x)u =
∑

|α|,|β|≤m

(−∂x)
α
(
Lαβ(x)∂β

x u)

with measurable complex valued coefficients Lαβ in R
n
+.

We also need a differential operator with constant coefficients

(17) L(∂x) = (−1)m
∑

|α|=|β|=m

Lαβ∂α+β
x ,

where �L(ξ) > 0 for ξ ∈ R
n \ O. It will be convenient to require that the

coefficient of L(∂x) in ∂2m
xn

is equal to (−1)m .
We treat L(x, ∂x) as a perturbation of L(∂x) and characterize this pertur-

bation by the function

(18) �(r)= sup
x∈Kr/e,r


 ∑

|α|=|β|=m

|Lαβ(x) − Lαβ | +
∑

|α+β|<2m

x2m−|α+β|
n |Lαβ(x)|


 ,
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which is assumed to be smaller than a certain positive constant depending on n,
m, p and the coefficients Lαβ . It is straightforward that

(19) �(r) ≤
∫ re

r/e
�(t)

dt

t
.

By the classical Hardy inequality

(20) M
−m
p ((L − L)(u); Kr/e,r ) ≤ c �(r)Mm

p (u; Kr/e,r ) ,

where c depends only on n, m and p. Therefore, the boundedness of �(r)

implies that the operator L(x, ∂x) maps
◦

W m,p
loc (Rn+ \ O) into W −m,p

loc (Rn+ \ O).
In what follows we always require that the right-hand side f in (14) belongs

to W −m,p
loc (Rn+ \O) and consider a solution u of (14) in the space

◦
W m,p

loc (Rn+ \O).
This solution satisfies

(21)
∫

R
n+

∑
|α|,|β|≤m

Lαβ(x)∂β
x u(x)∂α

x v(x)dx =
∫

R
n+

f v(x)dx

for all v ∈ ◦
W m,q

comp(R
n+ \O), pq = p +q. The integral on the right is understood

in the distribution sense.

4. – Formulation of the main result

In the next statement we make use of the notation introduced in Section 3.
We also need the Poisson kernel E of the equation

(22)
∑

|α|=|β|=m

Lαβ∂α+β
x E(x) = 0 in ; R

n
+ ,

which is positive homogeneous of degree m−n and subject to the Dirichlet con-
ditions on the hyperplane xn = 0:

(23) ∂ j
xn

E = 0 for 0 ≤ j ≤ m − 2 , and ∂m−1
xn

E = δ(x ′) ,

where δ is the Dirac function.
In what follows, by c and C (sometimes enumerated) we denote different

positive constants which depend only on m, n, p and the coefficients Lα,β .
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Theorem 1. Assume that �(r) does not exceed a sufficiently small positive
constant depending on m, n, p and Lαβ . There exist positive constants C and c
depending on the same parameters such that the following assertions are valid.

(i) There exists Z ∈ ◦
W m,p

loc (Rn+ \O) subject to L(x, ∂x)Z = 0 on B+
e and satisfying

(24) (r∂r )
k Z(x) = mk exp

(∫ 1

r
(−�(ρ) + ϒ(ρ))

dρ

ρ

)
(xm

n + rmvk(x)) ,

where k = 0, 1, . . . , m, r = |x | < 1 and ϒ is a measurable function on (0, 1)

satisfying

(25)
|ϒ(r)|
≤ C �(r)

(
r−n

∫ r

0
e
C
∫ r

ρ
�(s) ds

s �(ρ)ρn−1dρ + r
∫ e

r
eC

∫ ρ

r
�(s) ds

s �(ρ)ρ−2dρ

)
,

and

�(ρ) = ρn
∫

Sn−1
+

∑
|α|=m

(Lα,(0′,m)(ξ) − Lα,(0′,m))E (α)(ξ)dθξ

+ ρn
∫

Sn−1
+

∑
|α|+k<2m

Lα,(0′,k)(ξ)
ξm−k

n

(m − k)!
E (α)(ξ)dθξ

withρ =|ξ |, θ = ξ/|ξ |. The functionsvk belong to L p
loc((0, ∞); ◦

W m−k,p(Sn−1
+ ))

and satisfy

(26)

(∫ r

r/e
(||vk(ρ, ·)||p

W m−k,p(Sn−1
+ )

+ ||ρ∂ρvk(ρ, ·)||p

W m−k−1,p(Sn−1
+ )

)
dρ

ρ

)1/p

≤ c
(

r−n
∫ r

0
e
C
∫ r

ρ
�(s) ds

s �(ρ)ρn−1dρ + r
∫ e

r
eC

∫ ρ

r
�(s) ds

s �(ρ)ρ−2dρ

)
,

where k = 0, . . . , m−1, Sn−1
+ is the upper hemisphere and

◦
W m−k,p(Sn−1

+ ) is the
completion of C∞

0 (Sn−1
+ ) in the norm of the Sobolev space W m,p(Sn−1

+ ). In the
case k = m estimate (26) holds without the second norm in the left-hand side.

(ii) Let

(27) I f :=
∫ e

0
ρm exp

(
C

∫ 1

ρ

�(s)
ds

s

)
M

−m
p ( f ; Kρ/e,ρ)

dρ

ρ
< ∞

and let u ∈ ◦
W m,p

loc (Rn+ \ O) be a solution of L(x, ∂x)u = f on B+
e subject to

(28)

(∫
Kr/e,r

|u(x)|p|x |−ndx

)1/p

= o
(

rm−n exp
(

−C
∫ 1

r
�(ρ)

dρ

ρ

))
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as r → 0. Then for x ∈ B+
1

(29) u(x) = C Z(x) + w(x) ,

where the constant C satisfies

(30) |C | ≤ c(I f + ||u||L p(K1,e))

and the function w ∈ ◦
W m,p

loc (Rn+ \ O) is subject to

(31)

M
m
p (w; Kr/e,r ) ≤ c

(∫ r

0
rmρme

C
∫ r

ρ
�(s) ds

s
M

−m
p ( f ; Kρ/e,ρ)

dρ

ρ

+
∫ e

r
rm+1ρm−1eC

∫ ρ

r
�(s) ds

s M
−m
p ( f ; Kρ/e,ρ)

dρ

ρ

+rm+1eC
∫ 1

r
�(s) ds

s ||u||L p(K1,e)

)

for r < 1.

This theorem will be proved in Section 5-18.

5. – Reduction of problem (14), (15) to the Dirichlet problem in a cylinder

We write problem (14), (15) in the variables

(32) t = − log |x | and θ = x/|x | .
The mapping x → (t, θ) transforms R

n
+ onto the cylinder � = Sn−1

+ × R.

We shall need the spaces
◦

W m,p
loc (�) and W −m,p

loc (�) which are the images

of
◦

W m,p
loc (Rn+ \O) and W −m,p

loc (Rn+ \O) under mapping (32). They can be defined
independently as follows.

The space
◦

W m,p
loc (�) consists of functions whose derivatives up to order m

belong to L p(D) for every compact subset D of � and whose derivatives up to

order m − 1 vanish on ∂�. The seminorm Mm
p (u; Ke−1−t ,e−t ) in

◦
W m,p

loc (Rn+ \O)

is equivalent to the seminorm

||u||W m,p(�t ) , t ∈ R ,

where
�t = {(θ, τ ) ∈ � : τ ∈ (t, t + 1)} .

The space W −m,p
loc (�) consists of the distributions f on � such that the seminorm

(33) || f ||W−m,p(�t ) = sup
∣∣∣∣
∫

�t

f vdτdθ

∣∣∣∣
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is finite for every t ∈ R. The supremum in (33) is taken over all v ∈ ◦
W m,q

loc (�),
pq = p + q, supported by �t and subject to ||v||W m,q (�t ) ≤ 1. The semi-
norm (33) is equivalent to M−m

p ( f ; ; Ke−1−t ,e−t ).
In the variables (t, θ) the operator L takes the form

(34) L(∂x) = e2mt A(θ, ∂θ , −∂t ) ,

where A is an elliptic partial differential operator of order 2m on � with smooth
coefficients. We introduce the operator N by

(35) L(∂x) − L(x, ∂x) = e2mt
N(θ, t, ∂θ , −∂t ) .

Now problem (14), (15) can be written as{ A(θ, ∂θ , −∂t )u = N(θ, t, ∂θ , −∂t )u + e−2mt f on �

u ∈ ◦
W p,m

loc (�) ,

where f ∈ W −m,p
loc (�). We do not mark the dependence on the new variables

t , θ in u and f .

Let W −m,p(Sn−1
+ ) denote the dual of

◦
W m,q(Sn−1

+ ) with respect to the inner
product in L2(Sn−1

+ ). We introduce the operator pencil

(37) A(λ) :
◦

W m,p(Sn−1
+ ) → W −m,p(Sn−1

+ )

by

(38) A(λ)U (θ) = r−λ+2m L(∂x)r
λU (θ) = A(θ, ∂θ , λ)U (θ) .

The following properties of A and its adjoint are standard and their proofs can
be found, for example in [KMR], Section 10.3. The operator (37) is Fredholm
for all λ ∈ C and its spectrum consists of eigenvalues with finite geometric
multiplicities. These eigenvalues are

(39) m, m + 1, m + 2, . . . and m − n, m − n − 1, m − n − 2, . . . ,

and there are no generalized eigenvectors. The only eigenvector (up to a constant
factor) corresponding to the eigenvalue m is |x |−m xm

n = θm
n .

We introduce the operator pencil A(λ) defined on
◦

W m,p(Sn−1
+ ) by the

formula
A(λ)U (θ) = r−λ+2m L(∂x)r

λU (θ) .

This pencil has the same eigenvalues as the pencil A(λ). The only eigenvector
(up to a constant factor) corresponding to the eigenvalue m −n is |x |n−m E(x) =
E(θ), where E is the Poisson kernel defined in Section 4.

Using the definitions of the above pencils and Green’s formula for L and
L one can show that

(40) (A(λ))∗ = A(2m − n − λ) ,

where ∗ denotes passage to the adjoint operator in L2(Sn−1
+ ).
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6. – Properties of the unperturbed Dirichlet problems in � and R
n
+

Let us consider the Dirichlet problem

{
L(∂x)u = f in R

n
+ ,

u ∈ ◦
W p,m

loc (Rn+ \ O) .

Proposition 1.

(i) Let f ∈ W −m,p
loc (Rn+ \ O) be subject to

(41)
∫ 1

0
ρm

M
−m
p ( f ; Kρ/e,ρ)

dρ

ρ
+

∫ ∞

1
ρm−1

M
−m
p ( f ; Kρ/e,ρ)

dρ

ρ
< ∞ .

Then problem (41) has a solution u ∈ ◦
W m,p

loc (Rn+ \ O) satisfying

(43)

M
m
p (u; Kr/e,r )

≤ c
(∫ r

0
rmρm

M
−m
p ( f ; Kρ/e,ρ)

dρ

ρ
+

∫ ∞

r
rm+1ρm−1

M
−m
p ( f ; Kρ/e,ρ)

dρ

ρ

)
.

Estimate (43) implies

(44) M
m
p (u; Kr/e,r ) =

{
o(rm) if r → 0

o(rm+1) if r → ∞ .

Solution u ∈ ◦
W m,p

loc (Rn+ \ O) of problem (41) subject to (44) is unique.
(ii) Let f ∈ W −m,p

loc (Rn+ \ O) be subject to

(45)
∫ 1

0
ρm+n

M
−m
p ( f ; Kρ/e,ρ)

dρ

ρ
+

∫ ∞

1
ρm

M
−m
p ( f : Kρ/e,ρ)

dρ

ρ
< ∞ .

Then problem (41) has a solution u ∈ ◦
W m,p

loc (Rn+ \ O) satisfying

(46)

M
m
p (u; Kr/e,r )

≤ c
(∫ r

0
rm−nρm+n

M
−m
p ( f ; Kρ/e,ρ)

dρ

ρ
+

∫ ∞

r
rmρm

M
−m
p ( f ; Kρ/e,ρ)

dρ

ρ

)
.

Estimate (46) implies

(47) M
m
p (u; Kr/e,r ) =

{
o(rm−n) if r → 0

o(rm) if r → ∞ .

Solution u ∈ ◦
W m,p

loc (Rn+ \ O) of problem (41) subject to (47) is unique.
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Proof. We start with proving (ii). Let us assume that f is supported by
{x ∈ R

n+ : 1/2 ≤ |x | ≤ 4}. We set

(48) u(x) =
∫

R
n+
G(x, y) f (y)dy ,

where G is Green’s function of problem (41). Using standard estimates of G
and its derivatives, one arrives at

M
m
p (u; Kr/e,r ) ≤ c(rm + rm−n)M−m

p ( f ; K1/4,8) .

By (13) this inequality can be written in the form (46). We check by dialation
that the same holds for f supported by ρ/2 ≤ |x | ≤ 4ρ where ρ is an arbitrary
positive number.

Now, we remove the restriction on the support of f . By a partition of
unity we represent f as the series

f =
∞∑

k=−∞
fk ,

where fk ∈ W −m,p(Rn
+) is supported by 2k−1 ≤ |x | ≤ 2k+2 and

(49)
∞∑

k=−∞
M

−m
p ( fk; Kρ/e,ρ) ≤ cM

−m
p ( f ; Kρ/e,ρ) .

Denote by uk the solution of problem (41) given by (48) with f replaced by fk .
It follows from (49) that the series

u =
∞∑

k=−∞
uk

satisfies (46). Hence, u is a required solution.
The uniqueness of u follows from Theorem 3.9.1 [KM1], where k+ = m

and k− = m − n.
The proof of existence in assertion (i) is the same as in (ii) with the only

difference that representation (48) is replaced by

u(x) =
∫

R
n+
G(x, y) f (y)dy − xm

n

m!

∫
R

n+
E(y) f (y)dy .

Uniqueness is a consequence of Theorem 3.9.1 [KM1] where k+ = m + 1 and
k− = m. The proof is complete.
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Let us turn to the Dirichlet problem

(50)
{ A(θ, ∂θ , −∂t )u = e−2mt f on �

u ∈ ◦
W p,m

loc (�) .

The next statement follows directly from Proposition 1 by the change of vari-
ables (32).

Proposition 2.

(i) Let f ∈ W −m,p
loc (�) be subject to

(51)
∫ ∞

0
e−mτ || f ||W−m,p(�τ )dτ +

∫ 0

−∞
e(1−m)τ || f ||W−m,p(�τ )dτ < ∞ .

Then problem (50) has a solution u ∈ ◦
W m,p

loc (�) satisfying the estimate

||u||W m,p(�t ) ≤ c
(∫ ∞

t
e−m(t+τ)|| f ||W−m,p(�τ )dτ

+
∫ t

−∞
e−(m+1)t−(m−1)τ || f ||W−m,p(�τ )dτ

)
.

Estimate (52) implies

(53) ||u||W m,p(�t ) =
{

o(e−mt) if t → +∞
o(e−(m+1)t) if t → −∞ .

The solution u ∈ ◦
W m,p

loc (�) of problem (50) subject to (53) is unique.
(ii) Let f ∈ W −m,p

loc (�) be subject to

(54)
∫ ∞

0
e−(m+n)τ || f ||W−m,p(�τ )dτ +

∫ 0

−∞
e−mτ || f ||W−m,p(�τ )dτ < ∞ .

Then problem (50) has a solution u ∈ ◦
W m,p

loc (�) satisfying the estimate

(55)
||u||W m,p(�t ) ≤ c

(∫ ∞

t
e(n−m)t−(m+n)τ || f ||W−m,p(�τ )dτ

+
∫ t

−∞
e−m(t+τ)|| f ||W−m,p(�τ )dτ

)
.

Estimate (55) implies

(56) ||u||W m,p(�t ) =
{

o(e(n−m)t) if t → +∞
o(e−mt) if t → −∞.

The solution u ∈ ◦
W m,p

loc (�) of problem (50) subject to (56) is unique.
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The following assertion can be interpreted as a description of the asymptotic
behavior of solutions to problem (50) at ±∞.

Proposition 3. Let f ∈ W −m,p
loc (�) be subject to

(57)
∫

R

e−mτ || f ||W−m,p(�τ )dτ < ∞ .

Also let u1 and u2 be solutions from Proposition 2 (i) and (ii) respectively. Then

(58) u2 − u1 = Ce−mtθm
n ,

where C is a constant.

Proof. By Proposition 2 (i) and (ii)

||u2 − u1||W m,p(�t ) = o(e(n−m)t) as t → +∞

and
||u2 − u1||W m,p(�t ) = o(e−(m+1)t) as t → −∞ .

By the local regularity result (see [ADN], Section 15) the same relations remain
valid for ||u2 −u1||W 2m,2(�t )

. Now (58) follows from Proposition 3.8.1 in [KM].

Returning to the variables x we derive from Proposition 3 the following
description of the asymptotic behavior of solutions to problem (41) both at
infinity and near the origin.

Proposition 4. Let f ∈ W −m,p
loc (Rn+ \ O) be subject to

(59)
∫ ∞

0
ρm

M
−m
p ( f ; Kρ/e,ρ)

dρ

ρ
< ∞ .

Also let u1 and u2 be solutions from (i) and (ii) in Proposition 1 respectively. Then

(60) u2(x) − u1(x) = Cxm
n ,

where C is a constant.

We show that the constant C in (60) can be found explicitly.

Proposition 5. The constant C in (60) is given by

(61) C = 1

m!

∫
R

n+
f (x)E(x)dx .

Proof. Integrating by parts we check the identity

(62)
∫

R
n+

L
(
∂x)(ζ xm

n )E(x)dx = m! ,
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where ζ is a smooth function equal to 1 in a neighborhood of the origin and
zero for large |x |.

By (60)

(63)
∫

R
n+

L(ζ(u2 − u1))Edx = C
∫

R
n+

L(ζ xm
n )Edx .

It follows from (62) that the right-hand side is equal to C m!. Using (44), we
see that ∫

R
n+

L(ζu1)Edx = 0 .

Similarly, by (47) ∫
R

n+
L((ζ − 1)u2)Edx = 0 ,

which together with (63) leads to (61).

Proposition 6. The constant C in (58) is given by

C = 1

m!

∫
�

e−mt f (t, θ) E(θ)dtdθ .

Proof. Results from Proposition 5.

The following uniqueness result is a consequence of Proposition 3.

Corollary 1. Let u ∈ ◦
W m,p

loc (�) be a solution of (50) with f = 0. Suppose
that u is subject to

(64) ||u||W m,p(�t ) =
{

o(e−(m−n)t ) if t → +∞
o(e−(m+1)t ) if t → −∞ .

Then u = const e−mtθm
n .

Proof. Let ζ = ζ(t) be a smooth function on R equal to 1 for t > 1 and 0
for t < 0. Then u = u2 − u1, where u2 = ζu and u1 = (ζ − 1)u. The functions
u1 and u2 satisfy (50) with f = A(ζu) − ζAu. Now the result follows from
Proposition 3.

7. – Properties of the perturbed Dirichlet problems in � and R
n
+

Now the turn to the Dirichlet problem (36). By (20), the perturbation N

of the operator A satisfies

(65) ||N|| ◦
W m,p(�t )→W−m,p(�t )

≤ c ω(t) ,

where we use the notation
ω(t) = �(e−t ) .

As before, we assume that � does not exceed a sufficiently small constant
depending on n, m, p and Lαβ .

The next statement generalizes Proposition 2.
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Proposition 7. There exist positive constants c and C such that the following
two assertions hold:

(i) Let f ∈ W −m,p
loc (�) be subject to

(66)

∫ ∞

0
e−mτ+C

∫ τ

0
ω(s)ds || f ||W−m,p(�τ )dτ

+
∫ 0

−∞
e(1−m)τ+C

∫ 0
τ

ω(s)ds || f ||W−m,p(�τ )dτ < ∞ .

Then problem (36) has a solution u ∈ ◦
W m,p

loc (�) satisfying the estimate

(67)
||u||W m,p(�t ) ≤ c

(∫ ∞

t
e−m(t+τ)+C

∫ τ

t
ω(s)ds || f ||W−m,p(�τ )dτ

+
∫ t

−∞
e−(m+1)t−(m−1)τ+C

∫ t
τ

ω(s)ds || f ||W−m,p(�τ )dτ

)
.

Estimate (67) implies

(68) ||u||W m,p(�t ) =
{

o(e−mt−C
∫ t

0
ω(s)ds

) if t → +∞
o(e−(m+1)t−C

∫ 0
t

ω(s)ds
) if t → −∞.

Solution u ∈ ◦
W m,p

loc (�) of problem (36) subject to (68) is unique.
(ii) Let f ∈ W −m,p

loc (�) be subject to

(69)

∫ ∞

0
e−(m+n)τ+C

∫ τ

0
ω(s)ds || f ||W−m,p(�τ )dτ

+
∫ 0

−∞
e−mτ+C

∫ 0
τ

ω(s)ds || f ||W−m,p(�τ )dτ < ∞ .

Then problem (36) has a solution u ∈ ◦
W m,p

loc (�) satisfying the estimate

(70)
||u||W m,p(�t ) ≤ c

(∫ ∞

t
e(n−m)t−(m+n)τ+C

∫ τ

t
ω(s)ds || f ||W−m,p(�τ )dτ

+
∫ t

−∞
e−m(t+τ)+C

∫ t
τ

ω(s)ds || f ||W−m,p(�τ )dτ

)
.

Estimate (70) implies

(71) ||u||W m,p(�t ) =
{

o(e(n−m)t−C
∫ t

0
ω(s)ds

) if t → +∞
o(e−mt−C

∫ 0
t

ω(s)ds
) if t → −∞.

Solution u ∈ ◦
W m,p

loc (�) of problem (36) subject to (71) is unique.
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Proof. Let k+ = m +1, k− = m in the case (i) and k+ = m, k− = m −n in
the case (ii). Repeating the proof ot Theorem 5.3.2 in [KM1] with Proposition 2
playing the role of Theorem 3.5.5 [KM1], we construct a solution u satisfying

||u||W m,p(�t ) ≤ c
∫

R

gω(t, τ )|| f ||W−m,p(�τ )dτ ,

where gω is a certain positive Green’s function of the ordinary differential
operator

−(∂t + k+)(∂t + k−) − cω(t) .

According to Proposition 6.3.1 [KM1] this Green’s function satisfies

gω(t, τ ) ≤ c ek±(τ−t)±C
∫ t

τ
ω(s)ds for t ≷ τ ,

which completes the proof of existence.

We turn to the proof of uniqueness. Let u ∈ ◦
W m,p

loc (�) be a solution of
problem (36) with f = 0 subject either to estimate (71) or (68). Clearly, these
estimates are valid for p = 2. The result follows from Theorem 10.8.13 [KM1],
where � = 2m and q = m.

By the change of variables (32) on can formulate Proposition 7 as follows

Proposition 8. There exists a positive constant C such that the following two
assertions hold:

(i) Let f ∈ W −m,p
loc (Rn+ \ O) be subject to

(72)

∫ 1

0
ρme

C
∫ 1

ρ
�(s) ds

s
M

−m
p ( f ; Kρ/e,ρ)

dρ

ρ

+
∫ ∞

1
ρm−1eC

∫ ρ

1
�(s) ds

s M
−m
p ( f ; Kρ/e,ρ)

dρ

ρ
< ∞ .

Then problem (14), (15) has a solution u ∈ ◦
W m,p

loc (Rn+ \ O) satisfying

(73)
M

m
p (u; Kr/e,r ) ≤ c

(∫ r

0
rmρme

C
∫ r

ρ
�(s) ds

s
M

−m
p ( f ; Kρ/e,ρ)

dρ

ρ

+
∫ ∞

r
rm+1ρm−1eC

∫ ρ

r
�(s) ds

s M
−m
p ( f ; Kρ/e,ρ)

dρ

ρ

)
.

Estimate (73) implies

(74) M
m
p (u; Kr/e,r ) =

{
o(rme−C

∫ 1
r

�(s) ds
s ) if r → 0

o(rm+1e−C
∫ r

1
�(s) ds

s ) if r → ∞ .

Solution u ∈ ◦
W m,p

loc (Rn+ \ O) of problem (14), (15) subject to (74) is unique.
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(ii) Let f ∈ W −m,p
loc (Rn+ \ O) be subject to

(75)

∫ 1

0
ρm+ne

C
∫ 1

ρ
�(s) ds

s
M

−m
p ( f ; Kρ/e,ρ)

dρ

ρ

+
∫ ∞

1
ρmeC

∫ ρ

1
�(s) ds

s M
−m
p ( f : Kρ/e,ρ)

dρ

ρ
< ∞ .

Then problem (14), (15) has a solution u ∈ ◦
W m,p

loc (Rn+ \ O) satisfying

(76)
M

m
p (u; Kr/e,r ) ≤ c

(∫ r

0
rm−nρm+ne

C
∫ r

ρ
�(s) ds

s
M

−m
p ( f ; Kρ/e,ρ)

dρ

ρ

+
∫ ∞

r
rmρmeC

∫ ρ

r
�(s) ds

s M
−m
p ( f ; Kρ/e,ρ)

dρ

ρ

)
.

Estimate (76) implies

(77) M
m
p (u; Kr/e,r ) =

{
o(rm−ne−C

∫ 1
r

�(s) ds
s ) if r → 0

o(rme−C
∫ r

1
�(s) ds

s ) if r → ∞ .

Solution u ∈ ◦
W m,p

loc (Rn+ \ O) of problem (14), (15) subject to (77) is unique.

8. – Reduction of problem (36) to a first order system in t

Let

(78)
∫

R

e−mτ+C|
∫ τ

0
ω(s)ds||| f ||W−m,p(�τ )dτ < ∞ .

This condition implies both (66) and (69) hence there exist the solutions u1 and
u2 from Proposition 7 (i) and (ii) respectively. Clearly, the difference u1 − u2
satisfies the homogeneous problem (36) and the relation

(79) ||u1 − u2||W m,p(�t ) =
{

o(e(n−m)t−C
∫ t

0
ω(s)ds

) if t → +∞
o(e−(m+1)t−C

∫ 0
t

ω(s)ds
) if t → −∞ .

Here and in Sections 9-18 we show that there exists a solution Z of the
homogeneous problem (36), unique up to a constant factor, such that u1 −u2 =
Cf Z , where Cf is a constant depending on f . We also give an asymptotic
representation of Z at infinity. We start with reducing problem (36) to a first
order system in t . To this end we write (36) in a slightly different form. First
we obtain a representation of the right-hand side f by using the following
standard assertion.
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Lemma 1. One can represent f ∈ W −m,p
loc (�) as

(80) f = e2mt
m∑

j=0

(−∂t )
m− j f j ,

where fj ∈ L p
loc(R; W − j,p(Sn−1

+ )). This representation can be chosen to satisfy

c1M
−m
p ( f ; Ke−1−t ,e−t ) ≤ e2mt

m∑
j=0

|| f j ||W− j,p(�t )
≤ c2M

−m
p ( f ; Ke−2−t ,e1−t ) ,

where c1 and c2 are constants depending only on n, m and p.

One verifies directly that

r |α|∂α
x u =

|α|∑
l=0

Qαl(θ, ∂θ )(r∂r )
lu

and

r2m∂α
x (r−2m+|α|u) =

|α|∑
l=0

Pαl(θ, ∂θ )(r∂r )
lu

where Qαl(θ, ∂θ ) and Pαl(θ, ∂θ ) are differential operators of order |α| − l with
smooth coefficients. Furthermore, integrating by parts in∫

R
n+

∂α
x (r−2m+|α|u)r2m−nvdx

we obtain

(81) (−1)|α|
|α|∑
l=0

Qαl(r∂r + 2m − n)l =
|α|∑
l=0

P∗
αl(−r∂r )

l .

Now we write A in the form

A(θ, ∂θ , −∂t ) =
m∑

j=0

(−∂t )
m− jAj (−∂t ) ,

where

Aj (−∂t ) =
m∑

k=0

Ajk(−∂t )
m−k

with
Ajk = (−1)m

∑
|α|=|β|=m

Pα,m− j (θ, ∂θ )Lαβ Qβ,m−k(θ, ∂θ ) .
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It is clear that

(82) Ajk :
◦

W k,p(Sn−1
+ ) → W − j,p(Sn−1

+ )

are differential operators of order ≤ j + k on Sn−1
+ with smooth coefficients.

Since Qα,|α| = Pα,|α| = θα , we have

(83) A00 = L(θ) .

We also write

(84) N(θ, t, ∂θ , −∂t )u =
m∑

j=0

(−∂t )
m− j (

Nj (t, −∂t )u
)

,

where

(85) Nj (t, −∂t ) =
m∑

k=0

Njk(t)(−∂t )
m−k

with

(86) Njk =
∑

m− j≤|α|≤m

∑
m−k≤|β|≤m

(−1)|α| Pα,m− j Nαβ Qβ,m−k .

We use the notation Nαβ(e−tθ) = Lαβ − Lαβ(e−tθ) if |α| = |β| = m and
Nαβ(e−tθ) = −e(|α+β|−2m)tLαβ(e−tθ) if |α + β| < 2m. By (86) the operators

Njk(t) :
◦

W k,p(Sn−1
+ ) → W − j,p(Sn−1

+ )

are continuous. By (86) and (81), for almost all r > 0

(87)

∫
Sn−1
+

∑
j,k≤m

Njk(−∂t )
m−ku∂

m− j
t (e(2m−n)tv)dθ

=
∫

Sn−1
+

∑
j,k≤m

∑
m− j≤|α|≤m

∑
m−k≤|β|≤m

(−1)|α|Nαβ Qβ,m−k(−∂t )
m−ku

× P∗
α,m− j∂

m− j
t (e(2m−n)tv)dθ

= rn
∫

Sn−1
+

∑
|α|,|β|≤m

(Lαβ − Lαβ(x))∂β
x u∂α

x vdθ

− rn
∫

Sn−1
+

∑
|α+β|<2m

Lαβ(x)∂β
x u∂α

x vdθ ,

where u and v are in
◦

W m,p
loc (Rn+).
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Using the operators Aj (−∂t ) and Nj (t, −∂t ), and (80) we write problem (36)
in the form

(88)
m∑

j=0

(−∂t )
m− jAj (−∂t )u(t) =

m∑
j=0

(−∂t )
m− j (

Nj (t, −∂t )u + f j (t)
)

on R ,

where we consider u and f j as functions on R taking values in function spaces
on Sn−1

+ . By (18) and (81)

(89) ||Njk(t)|| ◦
W k,p(Sn−1

+ )→W− j,p(Sn−1
+ )

≤ c ω(t) .

Clearly, Nj acts from W m,p
loc (�) to L p

loc(R; W − j,p(Sn−1
+ )).

Let U = col(U1, . . . ,U2m), where

Uk = (−∂t )
k−1u, k = 1, . . . , m ,(90)

Um+1 = A0(−∂t )u − N0(t, −∂t )u − f0(91)

and

(92) Um+ j = −∂tUm+ j−1 + Aj−1(−∂t)u − Nj−1(t, −∂t )u − f j−1

for j = 2, . . . , m. With this notation (88) takes the form

(93) −∂tU2m + Am(−∂t )u − Nm(t, −∂t )u − fm = 0 .

Using (90) we write (91) as

(94) (A00 − N00(t))(−∂t )
mu = Um+1 −

m−1∑
k=0

(A0,m−k − N0,m−k(t))Uk+1 + f0 .

Since the function
N00(t) =

∑
|α|=|β|=m

Nαβ(e−tθ)θα+β

is bounded by cω(t), equation (94) is uniquely solvable with respect to (−∂t)
mu

and

(95) (−∂t )
mu = S(t)U + (A00 − N00(t))

−1 f0 ,

where

(96) S(t)U = (A00 − N00(t))
−1

(
Um+1 −

m−1∑
k=0

(A0,m−k − N0,m−k(t))Uk+1

)
.
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From (90) it follows that

(97) −∂tUk = Uk+1 for k = 1, . . . , m − 1 .

By (95) we have

(98) −∂tUm = S(t)U + (A00 − N00(t))
−1 f0 .

Using (95), we write (92) as

(99)
−∂tUm+ j = Um+ j+1 −

m−1∑
k=0

(Aj,m−k − Nj,m−k(t))Uk+1

− (Aj0 − Nj0(t))(S(t)U + (A00 − N00(t))
−1 f0) + f j

for j = 1, . . . , m − 1 and (93) takes the form

(100)
− ∂tU2m +

m−1∑
k=0

(Am,m−k − Nm,m−k(t))Uk+1

+ (Am0 − Nm0(t))(S(t)U + (A00 − N00(t))
−1 f0) − fm = 0 .

The relations (97), (98)-(100) can be written as the first order evolution
system

(101) (−I∂t − A)U(t) − N(t)U(t) = F(t) on R ,

where

(102) F(t) = col(0, . . . , 0,Fm(t),Fm+1(t), . . . ,F2m(t))

with

Fm(t) = (A00 − N00(t))
−1 f0(t) ,(103)

Fm+ j (t)= f j (t)−(Aj0−Nj0(t))(A00−N00(t))
−1 f0(t), j =1, . . . , m .(104)

The operator N is given by

(105) N(t)U = col(0, . . . , 0, Nm(t)U, Nm+1(t)U, . . . , N2m(t)U) ,

where

(106) Nm(t)U = (A00 − N00(t))
−1

(
m−1∑
k=0

N0,m−k(t))Uk+1 + N00(t)S(t)U
)
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and

(107)

Nm+ j (t)U =
m−1∑
k=0

Nj,m−k(t)Uk+1 + Nj0(t)S(t)U

− Aj0(A00 − N00(t))
−1

(
m−1∑
k=0

N0,m−k(t)Uk+1 + N00(t)S(t)U
)

for j = 1, . . . , m.
In (101), by I, we denote the identity operator. We also use the operator

matrix

(108) A = J − L

with J = {(J )jk}2m
j,k=1 given by




(m + 1)

0 I 0 · · · · · · · · · 0

0 0 I · · · ... · · · 0

· · · · · · · · · . . .
... · · · · · ·

(m) 0 · · · · · · · · · A−1
00 · · · 0

· · · · · · · · · · · · · · · . . . · · ·
0 0 0 · · · · · · · · · I
0 0 0 · · · · · · · · · 0




and with L = {Ljk}2m
j,k=1 equal to




0 · · · 0 0 · · · 0
...

. . .
... · · · ...

...

0 · · · 0 0 · · · 0

A−1
00 A0,m · · · A−1

00 A0,1 0 · · · 0

A1,m − A1,0 A−1
00 A0,m · · · A1,1 − A1,0 A−1

00 A0,1 0 · · · 0
... · · · ... · · · . . .

...

Am,m − Am,0 A−1
00 A0,m · · · Am,1 − Am,0 A−1

00 A0,1 0 · · · 0




.

We put

D = ◦
W m,p(Sn−1

+ ) × . . . × ◦
W 1,p(Sn−1

+ ) × L p(Sn−1
+ ) × (W −m,p(Sn−1

+ ))m−1

and

R = ◦
W m−1,p(Sn−1

+ ) × . . . × ◦
W 1,p(Sn−1

+ ) × L p(Sn−1
+ ) × (W −m,p(Sn−1

+ ))m .

By (82) the operator A : D → R is continuous.
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9. – Linearization of the pencil A(λ)

Here we find a correspondence between A(λ) and the linear pencil λI−A.

Lemma 2. Let the row vector

e(λ) = (e1(λ), . . . , e2m(λ))

be given by

e2m− j (λ) = λ j , j = 0, . . . , m − 1 ,(109)

em(λ) =
m∑

j=0

λm− j Aj0 ,(110)

em−k(λ) =
k∑

s=0

m∑
j=0

λk+m−s− j Ajs, k = 1, . . . , m − 1 .(111)

Then for all λ ∈ C the equality

(112) e(λ)(λI − A) = (A(λ), 0, . . . , 0)

is valid.

Proof. Follows by direct substitution of (109)-(111) in (112).

We introduce the operator matrix E(λ) = {Epq(λ)}2m
p,q=1 as

(113)




(m)

e1(λ) e2(λ) · · · em(λ) · · · e2m−1(λ) e2m(λ)

−I 0 · · · 0 · · · 0 0
0 −I · · · 0 · · · 0 0
...

... · · · ... · · · ...
...

(m + 1) 0 0 · · · −A00 · · · 0 0
...

... · · · ... · · · ...
...

0 0 · · · 0 · · · −I 0




.

One can check directly that E−1(λ) is given by




(m + 1)

0 −I · · · 0 · · · 0 0
0 0 · · · 0 · · · 0 0
...

... · · · ... · · · ...
...

(m) 0 0 · · · −A−1
00 · · · 0 0

...
... · · · ... · · · ...

...

0 0 · · · 0 · · · 0 −I
I e1(λ) · · · em(λ) · · · e2m−2(λ) e2m−1(λ)




.



574 VLADIMIR KOZLOV – VLADIMIR MAZ’YA

Lemma 3. For all λ ∈ C

(114)
E(λ)(λI − A)

= diag(A(λ), I, . . . , I )
( J (λ) 0

−B(λ) J (λ) − M
)

where the m × m matrices J (λ), M and B(λ) are defined by

J (λ) =




I 0 . . . 0 0
−λ I . . . 0 0
...

...
...

...

0 0 . . . I 0
0 0 . . . −λ I


 , M =




0 0 . . . 0 0
A10 A−1

00 0 . . . 0 0
A20 A−1

00 0 . . . 0 0
...

...
...

...

Am−1,0 A−1
00 0 . . . 0 0




and

B(λ) =




A0m A0,m−1 . . . A02 A01
A1,m A1,m−1 . . . A12 A11

...
... . . .

...
...

Am−1,m Am−1,m−1 . . . Am−1,2 Am−1,1




−




0 0 . . . 0 −λA00
A10 A−1

00 A0,m A10 A−1
00 A0,m−1 . . . A10 A−1

00 A02 A10 A−1
00 A01

...
... . . .

...
...

Am−1,0 A−1
00 A0,m Am−1,0 A−1

00 A0,m−1 . . . Am−1,0 A−1
00 A02 Am−1,0 A−1

00 A01




.

Proof. By Lemma 2 the left-hand side of (114) is a triangular matrix with
the diagonal A(λ), I, . . . , I . One can directly verify that it is equal to the
right-hand side in (114).

Clearly, the matrix J (λ) has the inverse

(115) J (λ)−1 =




I 0 0 . . . 0 0

λ I 0 . . .
...

...

λ2 λ I . . .
...

...
...

...
... . . . I 0

λm−1 λm−2 λm−3 . . . λ I


 .

In the next lemma we evaluate the inverse of the last matrix in (114). We
show, in particular, that this inverse is a polynomial operator matrix.

Lemma 4. The folowing formula is valid:

(116)
( J (λ) 0

−B(λ) J (λ) − M
)−1 =

( J−1(λ) 0
Q(λ) J−1(λ)(I + M)

)
,
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where the elements of the matrix Q(λ) = {Qjk(λ)}m
j,k=1 are given by

(117) Qjk(λ) =
j−1∑
l=0

m∑
q=k−1

λq+l+1−k Aj−l−1,m−q .

Proof. Let us look for (J (λ) − M)−1 in the form J−1(λ) + S(λ), where
S(λ) has non-zero elements only in the first column and S11(λ) = 0. We have

(J (λ) − M)(J−1(λ) + S(λ)) = I + J (λ)S(λ) − MJ−1(λ) .

Hence
S(λ) = J−1(λ)M .

Therefore we arrive at (116) with

Q(λ) = (J−1(λ) + S(λ))B(λ)J−1(λ) .

One can check that the last equality gives (117).

Lemma 5.
(i) The operator

(118) λI − A : D → R

is Fredholm for all λ ∈ C.
(ii) The spectra of the operator A and the pencil A(λ) coincide and consist of

eigenvalues of the same multiplicity.

Proof. Let

B = W −m,p(Sn−1
+ ) × ◦

W m−1,p(Sn−1
+ ) × . . . × ◦

W 1,p(Sn−1
+ )

× L p(Sn−1
+ ) × (W −m,p(Sn−1

+ ))m−1 .

The operator
E(λ) : R → B

is an isomorphism for all λ ∈ C. Analogously, one verifies that the operator{ J (λ) 0
−B(λ) J (λ) − M

}
: D → D

is isomorphic for all λ ∈ C. Hence and by (114) the polynomial operator
functions

λI − A : D → R
and

diag(A(λ), I, . . . , I ) : D → B

are equivalent and therefore these functions have the same spectrum, and the
geometric, partial and algebraic multiplicities of their eigenvalues coincide (see,
for example, [KM], Appendix).
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10. – Spectral properties of A

We put
φ(θ) = θm

n and ψ(θ) = (m!)−1 E(θ) .

By (62) and (38)

(119)
∫

�

A(−∂t )(η(t)e−mtφ(θ)) emtψ(θ)dθdt = 1 ,

where η is a smooth function equal to 1 for large positive t and 0 for large
negative t . The equality (119) can be written as

(120)
∫

Sn−1
+

A′(m)φ(θ) ψ(θ)dθ = −1 .

We introduce the vector

(121) � = col(�k)
2m
k=1 =

( J−1(m) 0
Q(m) J−1(m)(I + M)

)
col(φ, 0, . . . , 0) .

Owing to (114) and (116) we obtain

(122) (mI − A)� = 0 .

Using (115) and the definitions of the matrices M and B we get

�k = mk−1φ, k = 1, . . . , m ,(123)

�m+k =
k−1∑
p=0

m∑
q=0

Ak−p−1,m−qm p+qφ(124)

for k = 1, . . . , m.
We introduce the vector � = col(�k)

2m
k=1, by

(125) � = E∗(m) col(ψ, 0, . . . , 0)

where E∗(λ) is the adjoint of E(λ). Since ψ is the eigenfunction of the pencil
(A(λ))∗ corresponding to the eigenvalue λ = m, it follows from (114) that

(126) (mI − A
∗)� = 0 .

By (113)

�k =
m−k∑
p=0

m∑
q=0

A∗
qpm2m−k−q−pψ
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for k = 1, . . . , m − 1,

�m =
m∑

q=0

A∗
q0mm−qψ

and �m+k = mm−kψ for k = 1, . . . , m.
Clearly, � ∈ D, � ∈ R∗, where

R∗ = W 1−m,q(Sn−1
+ ) × . . . × W −1,q(Sn−1

+ ) × Lq(Sn−1
+ ) × (

◦
W m,q(Sn−1

+ ))m .

Proposition 9. The biorthogonality condition

(127) (�, �)
L2(Sn−1

+ )
= −1

is valid.

Proof. By (114) and (116)

(128) ((λI − A)�λ, �λ) = (A(λ)φ, ψ)
(L2(Sn−1

+ ))
,

where
�λ =

( J−1(λ) 0
Q(λ) J−1(λ)(I + M)

)
col(φ, 0, . . . , 0)

and �λ = E∗(λ) col(ψk, 0, . . . , 0). Taking the first derivative of (128) with
respect to λ, setting λ = m and using (122) and (126) together with (120) we
arrive at (127).

We introduce the spectral projector P corresponding to the eigenvalue
λ = m:

(129) PF = −(F, �)
L2(Sn−1

+ )
� .

This operator maps R into D.

11. – Equivalence of equation (88) and system (101)

We introduce some vector function spaces to be used in the subsequent
study of system (101).

Let S(a, b) be the space of vector functions U on the interval (a, b) with
values in D such that

||U ||S(a,b) =
(∫ b

a
(||U(τ )||p

D + ||∂τU(τ )||p
R)dτ

)1/p

< ∞ .
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More explicitly:

||U ||S(a,b) =

∫ b

a


m+1∑

j=1

||Uj (τ )||p
◦
W m+1− j,p(Sn−1

+ )

+
2m∑

j=m+2

||Uj (τ )||p

W−m,p(Sn−1
+ )

+
m∑

j=1

||∂τUj (τ )||p
◦
W m− j,p(Sn−1

+ )

+
2m∑

j=m+1

||∂τUj (τ )||p

W−m,p(Sn−1
+ )


dτ




1/p

.

By Sloc(R) we denote the space of functions defined on R with finite seminorms
||U ||S(t,t+1), t ∈ R. Let P be the projector given by (129). Clearly,

(130) ||PU ||S(a,b) ≤ c||U ||S(a,b) .

By L p(a, b; B) and L p
loc(R; B) we denote the L p and L p

loc spaces of vector
functions on (a, b) and R which take values in a Banach space B.

Let W m,p
0 ((a, b)×Sn−1

+ ) be the subspace of the Sobolev space W m,p((a, b)×
Sn−1

+ ) containing functions vanishing on (a, b)×∂Sn−1
+ together with their deriva-

tives up to order m − 1. The space of vector functions

(131) U(t) = col(u(t), . . . , ∂m−1
t u(t), um+1, . . . , u2m(t))

with u ∈ W m,p
0 ((a, b) × Sn−1

+ ),

um+1 ∈ L p(a, b; L p(Sn−1
+ )), ∂t um+1 ∈ L p(a, b; W −m,p(Sn−1

+ ))

and
um+ j , ∂t um+ j ∈ L p(a, b; W −m,p(Sn−1

+ )), j = 2, . . . , m,

will be denoted by S(a, b). The norm in S(a, b) is defined by

||U ||S(a,b) = ||u||
W m,p((a,b)×Sn−1

+ )
+ ||um+1||L p(a,b;L p(Sn−1

+ ))

+
m∑

j=2

||um+ j ||L p(a,b;W−m,p(Sn−1
+ ))

+
m∑

j=1

||∂t um+ j ||L p(a,b;W−m,p(Sn−1
+ ))

.

The space S(a, b) is embedded into S(a, b) and for U ∈ S

c1||U ||S(a,b) ≤ ||U ||S(a,b) ≤ c2||U ||S(a,b) .

The space Sloc(R) is defined as the set of vector functions U such that their
restrictions to every finite interval (a, b) belong to S(a, b). The seminorms in
this space are ||U ||S(t,t+1), t ∈ R.

By X(a, b) we denote the space

(132) X(a, b) = {V : V = (I − P)U, U ∈ S(a, b)}
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endowed with the norm

||V||X(a,b) = inf ||U ||S(a,b) ,

where the infinum is taken over all U in (132).
We use the space Xloc(R) = {V : V = (I − P)U, U ∈ Sloc(R))} and

finally, we introduce the space Yloc(R) which consists of the vector functions
F = col(0, . . . , 0,Fm,Fm+1, . . . ,F2m) with finite seminorms

||F ||Y(t,t+1) =

 m∑

j=0

∫ t+1

t
||Fm+ j (τ )||p

W− j,p(Sn−1
+ )

dτ




1/p

, t ∈ R .

We return to system (101). By (89) the operator N(t) : Sloc(R) → Yloc(R) is
continuous and

(133) ||N||S(t,t+1)→Y(t,t+1) ≤ c ω(t) .

Furthermore,

(134) c1||F ||Y(t,t+1) ≤
m∑

j=0

|| f j ||W− j,p(�t )
≤ c2||F ||Y(t,t+1) ,

where c1 and c2 are positive constant.
We prove that equation (88) and system (101) is equivalent in a certain

sense.

Lemma 6. Let the functions fj ∈ W − j,p
loc (�) and the vector function F ∈

Yloc(R) be connected by (102)-(104).

(i) If u ∈ ◦
W m,p

loc (�) is a solution of (88) then the vector function U ∈ Sloc(R) given
by (90)-(92) solves (101).

(ii) If U ∈ Sloc(R) is a solution of (101) then U ∈ Sloc(R) and the function u = U1
solves (88).

Proof.
(i) This assertion follows directly from the above reduction of (88) to the first

order system (101).
(ii) By (97) and (98) we obtain Uk = (−∂t )

k−1U1 for k = 1, . . . , m and
S(t)U = (−∂t )

mU1. Now (99) takes the form
−∂tUm+ j = Um+ j+1 − Aj (−∂t )U1 + Nj (t, −∂t )U1 + Fj

and (100) can be written as
−∂tU2m + Am(−∂t )U1 − Nm(t, −∂t )U1 − Fm = 0 .

The last two equations imply (88) for u = U1.
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12. – Spectral splitting of the first order system (101)

Let P be the spectral projector (129). Applying P and I−P to system (101)
we arrive at

(135) (I∂t + A)u + PN(t)(u + v) = −PF on R

and

(136) (I∂t + A)v + (I − P)N(t)v = (P − I)(F + N(t)u) on R ,

where

(137) u(t) = PU(t), v(t) = (I − P)U(t) .

Clearly, u can be represented as u(t) = κ(t)�, where � is given by (121).
Furthermore, u ∈ Sloc(R) if and only if κ ∈ W 1,p

loc (R). Thus we have split
system (101) into the scalar equation (135) and the infinite-dimensional sys-
tem (136). Equation (135) can be written as

dκ

dt
(t) + mκ(t) − (N(t)(u + v)(t), �) = (F(t), �)

where � is defined in Section 10.
In the next lemma we establish the equivalence of equation (88) and the

split system (135), (136).

Lemma 7.
(i) Let fj ∈ L p

loc(R; W − j,p(Sn−1
+ )), j = 0, . . . , m, and let u ∈ ◦

W m,p
loc (�) be

a solution of (88). Then the vector function U given by (90)-(92) belongs to
Sloc(R) and the vector functions (137) satisfy (135) and (136) with F given
by (102)-(104).

(ii) Let F ∈ Yloc(R). Assume that
u(t) = (u1(t), . . . , u2m(t)) = κ(t)� ,

κ ∈ W 1,2
loc (R), and v = (v1, . . . , v2m) ∈ Sloc(R), such that Pv(t) = 0 for all

t ∈ R, satisfy (135) and (136). Then u + v ∈ Sloc(R) and

u = u1 + v1 ∈ ◦
W m,p

loc (�)

solves (88) with f0 = (A00 − N00)Fm and
fj = Fm+ j + (Aj0 − Nj0)Fm, j = 1, . . . , m .

Moreover, (−∂t )
j u = uj+1 + vj+1 for j = 1, . . . , m − 1.

Proof.
(i) It suffices to use Lemma 6 (i) and to apply the projectors P and I −P to

system (101).
(ii) We put U = u + v. Clearly, U ∈ Sloc(R) and equalities (101) and (137)

hold. Now the result follows from Lemma 6 (ii).
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13. – Solvability of the unperturbed infinite-dimensional part of the split system

We consider the case N = 0. In other words, we deal with the system

(138) (−I∂t − A)v = (I − P)F on R .

Lemma 8.
(i) (Existence) Let F ∈ Yloc(R). Suppose that

(139)
∫ ∞

0
e(m−n)τ ||F ||Y(τ,τ+1)dτ +

∫ 0

−∞
e(m+1)τ ||F ||Y(τ,τ+1)dτ < ∞ .

Then equation (138) has a solution v ∈ Xloc(R) satisfying

(140)
||v||X(t,t+1) ≤ c

(∫ ∞

t
e(n−m)(t−τ)||F ||Y(τ,τ+1)dτ

+
∫ t

−∞
e−(m+1)(t−τ)||F ||Y(τ,τ+1)dτ

)
,

where c is a constant independent of F .
(ii) (Uniqueness) Let v ∈ Xloc(R) satisfy (138) with F = 0. Also let

(141) ||v||S(t,t+1) =
{

o(e(n−m)t) if t → +∞
o(e−(m+1)t) if t → −∞ .

be valid. Then v = 0.

Proof.
(i) Let f0 = A00Fm and

f j = Fm+ j + Aj0Fm , j = 1, . . . , m .

Clearly, f j ∈ L p
loc(R; W − j,p(Sn−1

+ )) and
m∑

j=0

|| f j ||L
p
loc(t,t+1;W− j,p(Sn−1

+ ))
≤ c||F ||L p(t,t+1;Y) .

Let ζ be a smooth function on R, equal to 1 for t > 1 and 0 for t < 0.
For a fixed a ∈ R we represent f j as f (−)

ja + f (+)
ja , where

f (−)
ja (t) = ζ(t − a) f j (t), f (+)

ja (t) = (1 − ζ(t − a)) f j (t) .

Then the functions

f (±)
a (t) = e2mt

m∑
j=0

(−∂t )
m− j f (±)

ja (t)
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satisfy (51) and (54) respectively because of (139). By Proposition 2 there
exist solutions u(±)

a ∈ W m,p
loc (R) subject to (52) and (55) with f replaced

by f (±)
a . We put ua = u(−)

a + u(+)
a . Then ua satisfies (36) and

(142)
||ua||W m,p(a,a+1) ≤ c

(∫ ∞

a
e(m−n)(a−τ)||F ||Y(τ,τ+1)dτ

+
∫ a

−∞
e−(m+1)(a−τ)||F ||Y(τ,τ+1)dτ

)
.

We inroduce the vector function Ua = col(U1, . . . ,U2m) by (90)-(92), where
N = 0 and u is replaced by ua , and put va = (I−P)Ua . Clearly, va belongs
to Xloc(R) and satisfies (141). Let us show that va does not depend on a.
In fact, let a and b be different real numbers. Then the function ua − ub

satisfies the homogeneous problem (36) and relations (64). Hence and by
Corollary 1 we have ua −ub = Ce−mtθm

n . The last equality implies va = vb

because of the definition of P . Thus, we can use the notation v for the
vector function va . Since ||v||S(a,a+1) ≤ c||ua||W m,p(a,a+1), estimate (140)
follows from (142).

(ii) We put u = v1. Since (I∂t + A)v = 0 it follows by (97) and (98) with
N = 0 that vk = (−∂t )

k−1u for k = 1, . . . , m and

(−∂t )
mu = A−1

00

(
vm+1 −

m−1∑
k=0

A0,m−k(−∂t )
ku

)
.

Hence vm+1 = A0(−∂t )u. (Note that u ∈ W m,p
loc (�) because v ∈ Sloc(R))

Now relation (99) with N = 0 takes the form

(143) −∂t vm+ j = vm+ j+1 − Aj (−∂t )u ,

where j = 1, . . . , m − 1, and (100) becomes

(144) −∂t v2m + Am(−∂t )u = 0 .

Using (143) and (144) we obtain A(−∂t )u = 0. Furthermore, by (141) the
function u satisfies (64). By Corollary 1 we arrive at u(t) = Ce−mtθm

n and
using the definition (129) of P we get v = 0. The proof is complete.

14. – Solvability of the infinite-dimensional part of the perturbed split system

Here we study the system

(145) (I∂t + A)v + (I − P)N(t)v = (I − P)F on R .

We introduce the operator L which assigns the solution v ∈ Sloc(R) subject
to (141) to the right-hand side in (138) satisfying the conditions of Lemma 8.
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Estimate (140) can be written as

(146) ||L(I − P)F ||X(t,t+1) ≤ c
∫ ∞

−∞
g(t − τ)||F ||Y(τ,τ+1)dτ ,

where

(147) g(t) =
{

e−(m+1)t for t ≥ 0

e−(m−n)t for t < 0 .

Lemma 9. Let c, c > 0, and

(148) δ := sup
τ∈R

ω(τ)

satisfy the inequality (1 + c)δ ≤ (n + 1)/8. Then the series

(149)
gω(t, τ ) = g(t − τ) +

∞∑
k=1

ck
∫

Rk
g(t − τ1)ω(τ1)g(τ1 − τ2)ω(τ2)

. . . ω(τk)g(τk − τ)dτ1τ2 . . . τk

is convergent and admits the estimate

(150) gω(t, τ ) ≤
{

c1e−(m+1)(t−τ)+c1
∫ t

τ
ω(s)ds for t ≥ τ

c1e(n−m)(t−τ)+c1
∫ τ

t
ω(s)ds for t < τ ,

where c1 = 2(1 + c).

Proof. We denote the right-hand side in (150) by g∗(t, τ ) and justify the
inequality

(151) g∗(t, τ ) ≥ g(t − τ) + c
∫

R

g(t − s)ω(s)g∗(s, τ )ds .

Consider the case t ≥ τ . We have∫ t

τ

g(t − s)ω(s)g∗(s, τ )ds = e−(m+1)(t−τ)

(
ec1

∫ t
τ

ω(s)ds − 1
)

.

Furthemore,∫ ∞

t
g(t − s)ω(s)g∗(s, τ )ds ≤ c1δ

n + 1 − c1δ
e−(m+1)(t−τ)+c1

∫ t
τ

ω(s)ds

and ∫ τ

−∞
g(t − s)ω(s)g∗(s, τ )ds ≤ c1δ

n + 1 − c1δ
e−(m+1)(t−τ) .

From the last three relations we derive (151), taking into account that

(152) c1δ < n + 1 and c1 ≥ 1 + c + 2
c1cδ

n + 1 − c1δ

by the assumptions of lemma. The case τ > t is considered analogouosly.
Now, iterating (151) we arrive at (150).
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The following assertion which concerns the variable coefficient case is
similar to Lemma 8.

Lemma 10. There exist positive constants δ0 and c0 depending only on n, m,

p and L such that for all δ ≤ δ0, where δ is given by (148), the following assertions
hold:

(i) Let F belong to Yloc(R) and be subject to

(153)

∫ ∞

0
e(m−n)τ+c0

∫ τ

0
ω(s)ds ||F ||Y(τ,τ+1)dτ

+
∫ 0

−∞
e(m+1)τ+c0

∫ 0
τ

ω(s)ds ||F ||Y(τ,τ+1)dτ < ∞ .

Then system (145) has a solution v ∈ Xloc(R) satisfying

(154)
||v||S(t,t+1) ≤ c

∫ ∞

t
e(n−m)(t−τ)+c0

∫ τ

t
ω(s)ds ||F ||Y(τ,τ+1)dτ∫ t

−∞
e−(m+1)(t−τ)+c0

∫ t
τ

ω(s)ds ||F ||Y(τ,τ+1)dτ .

(ii) The solution v ∈ Xloc(R) to (145) subject to

(155) ||v||S(t,t+1) =
{

o(e(n−m)t−c0
∫ t

0
ω(τ)dτ

) as t → +∞
o(e−(m+1)t−c0

∫ 0
t

ω(τ)dτ
) as t → −∞

is unique. (We note that (153) together with (154) imply (155).)

Proof. Let c be the constant in (146). Then one can take

δ0 = n + 1

8(1 + c)
and c0 = 4(1 + c) .

(i) Formally, the solution U of (145) can be written as the series

(156)
∞∑

k=0

(L(I − P)N)k
L(I − P)F ,

where L is the operator defined at the end of Section 13. We introduce
the sequence

(157) F (k) = N L ((I − P)N L)k (I − P)F , k = 0, 1, . . .
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Clearly, F (k) = col(0, . . . , 0, F (k)
m , . . . , F (k)

2m ) and by (146) and (133) F (k) ∈
Yloc(R). Now, (156) can be written as

(158) L(I − P)F + L(I − P)

∞∑
k=0

F (k) .

We show that the series

(159)
∞∑

k=0

F (k)

converges in Yloc(R). We have F (0) = N L (I − P)F and

F (k) = N L(I − P)F (k−1), k = 1, . . .

By (146) and (133)

‖ F (k) ‖Y(t,t+1)≤ cω(t)
∫

R

g(t − τ) ‖ F (k−1) ‖Y(τ,τ+1) dτ .

Therefore,

(160)

‖ F (k) ‖Y(t,t+1)

≤ ck+1ω(t)
∫

Rk+1
g(t − τ1)ω(τ1)g(τ1 − τ2)ω(τ2) . . . ω(τk)g(τk − τ)

× ‖ F ‖Y(τ,τ+1) dτ1 . . . dτkdτ, k = 0, 1, . . .

This implies

(161)
∞∑

k=0

||F (k)||Y(t,t+1) ≤ c ω(t)
∫

R

gω(t, τ ) ‖ F ‖Y(τ,τ+1) dτ ,

where gω is given by (149). Hence, series (159) converges in Yloc(R) to
a function F∗. Since

(162) gω(t, τ ) = g(t − τ) + c
∫

R

g(t − s)ω(s)gω(s, τ )ds ,

it follows from (161), (150) and (153) that∫
R

g(−τ) ‖ F∗ ‖Y(τ,τ+1) dτ < ∞ .

Therefore, (I−P)F∗ belongs to the domain of L. Thus, series (158) is well
defined, and we denote it by v. Estimates (146), (161) together with (162)
imply

‖ v ‖X(t,t+1)≤ c
∫

R

gω(t, τ ) ‖ F ‖Y(τ,τ+1) dτ .
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Owing to (150) we arrive at (154). Clearly, v is a solution of (145).
(ii) Let v ∈ Xloc(R) solve the equation

(163) (I∂t + A)v = (P − I)N(t)v on R .

Using (155) one checks directly that the right-hand side in (163) satisfies
the conditions of Lemma 8 (i). Therefore, by the same lemma and by (133)
we arrive at

(164) ||v||S(t,t+1) ≤ c
∫

R

g(t − τ)ω(τ)||v||S(τ,τ+1)dτ ,

where g is given by (147).
By (155) there exists the least constants A+ and A− in

(165) ||v||S(t,t+1) ≤
{

A+e(n−m)t−c0
∫ t

0
ω(τ)dτ as t ≥ 0

A−e−(m+1)t−c0
∫ 0

t
ω(τ)dτ as t < 0 .

Without loss of generality we assume that A+ ≤ A−. Suppose that A+ > 0
and let t ≥ 0. Using (165) we estimate the right-hand side in (164) by

c A+
(

e(n−m)t
∫ ∞

t
ω(τ)e−c0

∫ τ

0
ω(s)dsdτ + e−(m+1)t

∫ 0

−∞
ω(τ)e−c0

∫ 0
τ

ω(s)dsdτ

+e−(m+1)t
∫ t

0
ω(τ)e(n+1)τ−c0

∫ τ

0
ω(s)dsdτ

)

≤ c A+e(n−m)t−c0
∫ t

0
ω(s)ds

(
1

c0
+ 1

c0
e−(n+1)t+c0

∫ t
0

ω(s)ds + δ

n + 1 − c0δ

)

provided c0δ < n + 1. By the above assumptions

c(2/c0 + δ/(n + 1 − c0δ)) < 1 .

Therefore the constant A+ in (165) can be diminished. Thus, A+ = 0 and
therefore, v = 0.

15. – Scalar integro-differential equation

Lemma 10 enables one to introduce the operator M whose domain consists
of the vector functions (I−P)F with F ∈ Yloc(R) subject to (153). The vector
function M(I − P)F is equal to the solution v from the same lemma. Using
this operator one can write (135) as

(166)
(I∂t + A)u + PN(t)u + PN(t)MN(t)u
= −P (F + N(t)M(P − I)(F) on R .
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Representing u as
u(t) = exp

(
−mt +

∫ t

0
λ(τ)dτ

)
h(t)� ,

where
λ(t) = (N(t)�, �) ,

we derive from (166) the following integro-differential equation for h:

(167) ḣ(t) − K(h)(t) = f(t) ,

where
K(h)(t) = (N(t)Mτ→t(e

m(t−τ)−
∫ t

τ
λ(s)ds

N(τ )h(τ )�)(t), �)

and
f(t) = emt−

∫ t
0

λ(τ)dτ
(F(t) + N(t)M(P − I)F(t), �) .

Using (154) together with (133) we obtain the estimates

(169) ||K(h)||W 1,p(t,t+1) ≤ c ω(t)
∫

R

σ(t, τ )ω(τ)||h||L∞(τ,τ+1)dτ

and

(170) ||f||L p(t,t+1) ≤ c
(

||F ||Y(t,t+1) + ω(t)
∫

R

σ(t, τ )ω(τ)||F ||Y(τ,τ+1)dτ

)
,

where

(171) σ(t, τ ) =
{

e−(t−τ)+c2
∫ t

τ
ω(s)ds for t ≥ τ

en(t−τ)+c2
∫ τ

t
ω(s)ds for t < τ .

Here c2 is a positive constant, which depends on n, m, p and the coefficients
of the operator L .

Lemma 11. The function λ(t) = (N(t)�, �) admits the representation

(172) λ(t) =
m∑

j=0

m∑
k=0

(
Nm− j,m−k(t)m

kφ, m jψ
)

+ O(ω(t)2) ,

where φ and ψ are the same functions as in Section 10.

Proof. By (96) and and by (123), (124)

S(t)� = (A00 − N00(t))
−1

(
A00mmφ +

m−1∑
k=0

N0,m−k(t)m
kφ

)

= mmφ + (A00 − N00(t))
−1

m∑
k=0

N0,m−k(t)m
kφ .
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Now, using (105)-(107) we obtain

Nm(t)� = A−1
00

m∑
k=0

N0,m−k(t)m
kφ + O(ω2(t))

and

Nm+ j (t)� =
m∑

k=0

Nj,m−k(t)m
kφ

− Aj0 A−1
00

m∑
k=0

N0,m−k(t)m
kφ + O(ω2(t)) .

Therefore,

(N(t)�, �) =
m∑

j=0

m∑
k=0

(A−1
00 N0,m−k(t)m

kφ, A∗
j0mm− jψ)

+
m∑

j=1

m∑
k=0

((Nj,m−k(t)− Aj0 A−1
00 N0,m−k)m

kφ, mm− jψ)+O(ω2(t))

=
m∑

j=0

m∑
k=0

(Nj,m−k(t)m
kφ, mm− jψ) + O(ω2(t)) .

Clearly, the right-hand sides in the last equality and (172) coincide.

16. – Homogeneous equation (167)

We start with a uniqueness result for the equation

(173) ż(t) + (Kz)(t) = 0 t ∈ R .

Lemma 12. There exist positive constants δ0 and c3 depending only on n, m,

p and L such that: if δ ≤ δ0 and z ∈ W 1,p
loc (R) is a solution of (173) subject to

(174) z(t) =
{

o(ent−c3
∫ t

0
ω(s)ds

) as t → +∞
o(e−t−c3

∫ 0
t

ω(s)ds
) as t → −∞

and z(t0) = 0 for some t0 then z(t) = 0 for all t ∈ R.
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Proof. Without loss of generality we set t0 = 0. Integrating (173) and
using (169) we obtain

(175) ν(t) ≤ c

∣∣∣∣
∫ t

0
ω(τ)

∫
R

σ(τ, s)ω(s)ν(s)dsdτ

∣∣∣∣ ,

where ν(t) = ||z||L∞(t,t+1). We set

A = sup
t≥0

e−nt+c3
∫ t

0
ω(s)ds

ν(t) + sup
t<0

et+c3
∫ 0

t
ω(s)ds

ν(t) .

Let c2 be the same constant as in (171). We may suppose that c3 > c2.
For t ≥ 0 we estimate the right-hand side of (175) by

cA
∫ t

0
ω(τ)

{∫ ∞

τ

ω(s)enτ+c2
∫ s

τ
ω(x)dx−c3

∫ s
0

ω(x)dx ds

+
∫ τ

0
ω(s)es−τ+ns+c2

∫ τ

s
ω(x)dx−c3

∫ s
0

ω(x)dx ds

+
∫ 0

−∞
ω(s)e−τ+c2

∫ τ

s
ω(x)dx−c3

∫ 0
s

ω(x)dx ds
}

dτ .

Direct culculations give that the right hand-side is majorized by

cA
∫ t

0
ω(τ)

{
1

c3 − c2
enτ−c3

∫ τ

0
ω(x)dx

+ 1

c3 + c2
e−τ+c2

∫ τ

0
ω(x)dx + δ

n + 1 − (c2 + c3)δ
enτ−c3

∫ τ

0
ω(x)dx

}
dτ .

Supposing that (c2 +c3)δ<n+1 we conclude that the right-hand side is less than

cA
{

1

c3 − c2
+ 1

c2 + c3
+ δ

n + 1 − (c2 + c3)δ

} ∫ t

0
ω(τ)enτ−c3

∫ τ

0
ω(x)dx dτ

≤ cA
{

1

c3 − c2
+ 1

c2 + c3
+ δ

n + 1 − (c2 + c3)δ

}
δ

n − c3δ
ent−c3

∫ t
0

ω(x)dx
.

Therefore, assuming that δ is sufficiently small, one can choose c2 ≥ 4(1 + c)
and c3 satisfying the above restrictions and such that

σ+ = c
{

1

c3 − c2
+ 1

c2 + c3
+ δ

n + 1 − (c2 + c3)δ

}
δ

n − c3δ
< 1 .

This imlies

sup
t≥0

e−nt+c3
∫ t

0
ω(s)ds

ν(t) ≤ σ+ A .

Analogously, one verifies that

sup
t<0

et+c3
∫ 0

t
ω(s)ds

ν(t) ≤ σ− A

with some σ− < 1. Therefore, A = 0.
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Lemma 13. Equation (173) has a solution z ∈ W 1,∞
loc (R) given by

(176) z(t) = exp

(∫ t

t0

�(τ)dτ

)
,

where � is a locally summable function satisfying

(177) |�(t)| ≤ c χ(t) ,

where

χ(τ) = ω(t)
(∫ t

−∞
eτ−t+C

∫ t
τ

ω(s)ds
ω(τ)dτ +

∫ ∞

t
en(t−τ)+C

∫ τ

t
ω(s)ds

ω(τ)dτ

)
.

Proof. Let ε be a sufficiently small number depending on n, m and L and
let Bε = {� ∈ L∞(R) : |�(t)| ≤ εω(t)}. Inserting (176) into (173) we arrive at
the equation for �:

(178) �(t) + G(�)(t) = 0 , t ∈ R ,

where

G(�)(t) = Kτ→t

(
exp

(∫ τ

t
�(s)ds

))
.

Using (169) with p = 2 and assuming that δ is sufficiently small we obtain for
� ∈ Bε:

(179) |G(�)(t)| ≤ cω(t)
∫

R

σ(t, τ )ω(τ)eε|
∫ τ

t
ω(s)ds|dτ ≤ c1δω(t) ,

where c1 is a constant depending only on n, m and L . We suppose that c1δ ≤ ε.
This guarantees, in particular, that G maps Bε into itself.

Now let �1 and �2 be functions from Bε. By (169) we have

|G(�2)(t) − G(�1)(t)|
≤ cω(t)

∫
R

σ(t, τ )ω(τ) sup
τ∈(t,t+1)

∣∣∣∣exp
(∫ τ

t
�2(s)ds

)
− exp

(∫ τ

t
�1(s)ds

)∣∣∣∣ dτ .

Since ∣∣∣∣exp
(∫ τ

t
�2(s)ds

)
− exp

(∫ τ

t
�1(s)ds

)∣∣∣∣
≤ eεδ|t−τ |

∣∣∣∣
∫ τ

t
ω(s)ds

∣∣∣∣ sup
s∈R

|�2(s) − �1(s)|
ω(s)

,

we obtain

|G(�2)(t) − G(�1)(t)| ≤ c2δω(t) sup
s∈R

|�2(s) − �1(s)|
ω(s)

with some constant c2 depending on n, m and L . Assuming that c2δ < 1 we
get the existence of � ∈ Bε satisfying (178) by the Banach fixed point theorem.

Estimate (177) results from (179) and (178).
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The next statement directly follows from Lemma 13.

Corollary 2. Suppose that

∣∣∣∣
∫

R

χ(τ)dτ

∣∣∣∣ < ∞ .

Then the solution z from Lemma 13 admits the asymptotic representation

z(t) = 1 + O
(∫ ∞

t
χ(τ)dτ

)
as t → +∞ .

We denote by z(t, τ ) the solution of (173) subject to (174) and such that
z(τ, τ ) = 1. By Lemma 12 this solution is unique and by Lemma 13 such a
solution exists and satisfies

(180) e−c|
∫ t

τ
χ(s)ds| ≤ |z(t, τ )| ≤ ec|

∫ t
τ

χ(s)ds|

with c depending only on n, m and L .

17. – Representation of solutions of the homogeneous problem (36)

Lemma 14. There exists a nontrivial solution z ∈ ◦
W m,p

loc (�) to the homogeneous
problem (36) subject to

(181) ||z||W m,p(�t ) =
{

o(e(n−m)t−C
∫ t

0
ω(s)ds

) if t → +∞
o(e−(m+1)t−C

∫ 0
t

ω(s)ds
) if t → −∞ .

This solution is unique up to a constant factor and

(182) (−∂t )
k
z(t, θ) = Cmk exp

(
−mt +

∫ t

0
λ(τ)dτ

)
z(t)(φ(θ) + vk(t, θ)) ,

where C = const, k = 0, . . . , m, and z is the function from Lemma 13. For k < m
the remainder vk satisfies

(183)

||vk ||W m−k,p(�t )
+ ||∂tvk ||W m−k−1,p(�t )

≤ c
(∫ t

−∞
eτ−t+C

∫ t
τ

ω(s)ds
ω(τ)dτ +

∫ ∞

t
en(t−τ)+C

∫ τ

t
ω(s)ds

ω(τ)dτ

)
.

If k = m, then the second term on the right in the last inequality should be omitted.
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Proof. We introduce the vector function U = (U1, . . . ,U2m) with Uk given
by (90)-(92) where f0 = f1 = . . . = fm−1 = 0. By Lemma 6 the function

u ∈ ◦
W m,p

loc (�) solves the homogeneous equation (88) (or equivalently (36)) if
and only if U ∈ Sloc(R) is a solution of (101) with F = 0.

(i) Existence. Let

(184) u(t) = exp
(

−mt +
∫ t

0
λ(τ)dτ

)
z(t)� ,

where z(t) is the solution of (173) from Lemma 13. We are looking for a
solution U of the homogeneous system (101) in the form U(t) = u(t)+v(t),
where Pv(t) = 0. Then v satisfies (136) with F = 0. By (133) and
Lemma 13 the Y(t, t + 1)-seminorm of Nu is majorized by

cω(t) exp
(

−mt + �
∫ t

o
λ(τ)dτ + c

∫ t

0
χ(τ)dτ

)
.

By Lemma 10 system (136) has a solution v satisfying

||v||S(t,t+1) ≤ ce−mt+�
∫ t

0
λ(τ)dτ

×
(∫ t

−∞
eτ−t+C

∫ t
τ

ω(s)ds
ω(τ)dτ +

∫ ∞

t
en(t−τ)+C

∫ τ

t
ω(s)ds

ω(τ)dτ

)
.

Hence, z = U1 is the required solution of equation (36) The solution of
the homogeneous system (101) constructed above will be denoted by U∗ =
u∗ + v∗ where Pv∗ = 0.

(ii) Uniqueness. Suppose that the W m,p(�t )-seminorm of a solution u = z of
the homogeneous equation (36) is subject to (181). Consider the vector
function U − cU∗, where c is a arbitrary constant. We represent u in the
form (184) with a certain z. Similarly, let u∗ be given by (184) with z∗
instead of z. Clearly, z−cz∗ satisfies (173) and (174). Choosing c to satisfy
z(0) − cz∗(0) = 0 and using Lemma 12 one obtains z(t) − cz∗(t) = 0 for
all t . Now, applying Lemma 10 (ii) to the vector function v − cv∗, which
solves the homogeneous system (145), we conclude that v − cv∗ = 0. The
proof is complete.

Corollary 3. Let f ∈ W −m,p
loc (�) be subject to

(185) J f :=
∫

R

e−mτ+c|
∫ τ

0
ω(s)ds||| f ||W−m,p(�τ )dτ < ∞ ,

Also let u1 and u2 be solutions of problem (36) from Proposition 7 (i) and (ii)
respectively. Then

(186) u2 − u1 = C Z(t) ,

where C is a constant satisfying

(187) |C | ≤ cJ f .
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Proof. It follows from Proposition 7 that u2 − u1 is the solution of the
homogeneous equation (36) satisfying (181). Now, (186) holds by Lemma 14.
In order to prove (187) we write

|C | ||z||L p(�0) ≤ ||u2||L p(�0) + ||u1||L p(�0) .

Using estimates (67) and (70) we see that the right-hand side is majorazed by
cJ f . By (182) and (180)

||z||L p(�0) ≥ c||z||L p(0,1) ≥ c1 .

The proof is complete.

Lemma 15. There exists a nontrivial solution Z ∈ ◦
W m,p(Rn+ \ O) to the

homogeneous problem (14), (15) subject to

(188) M
m
p (Z; Kr/e,r ) =

{
o(rm−ne−C

∫ 1
r

�(ρ)
dρ
ρ ) if r → 0

o(rm+1e−C
∫ r

1
�(ρ)

dρ
ρ ) if r → ∞ .

This solution is unique up to a constant factor and admits the representation

(189)
(r∂r )

k Z(x)

= C mk exp
(∫ 1

r
(−�(ρ) + ϒ(ρ))

dρ

ρ

) (
xm

n + rmvk(x)
)

with the same notation as in the statement of Theorem 1 and with vk subject to (26).

Proof. By (172)

(190) λ(t) =
m∑

j=0

m∑
k=0

(Nj,k(t)(−∂t )
m−k)(e−mtφ), ∂

m− j
t (emtψ)) + O(ω(t)2) ,

where φ and ψ are the same functions as in Section 10. Setting u = e−mtφ

and v = e(n−m)tψ in (87) we arrive at

λ(− log r) = + f racrnm!
∫

Sn−1
+

∑
|α|,|β|≤m

(Lαβ − Lαβ(x))∂β
x xm

n ∂α
x E(x)dθ

− rn

m!

∫
Sn−1
+

∑
|α+β|<2m

Lαβ(x)∂β
x xm

n ∂α
x E(x)dθ + O(�(r)2) .

This can be written as λ(− log r) = �(r) + O(�(r)2). The result follows from
Lemma 14 by the change of variables (t, θ) → x .
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Corollary 4. Let f ∈ W −m,p
loc (Rn+ \ O) be subject to

(191) I f :=
∫ ∞

0
ρme

−C|
∫ 1

ρ
�(s) ds

s |
M

−m
p ( f ; Kρ/e,ρ)

dρ

ρ
< ∞ .

Also let u1 and u2 be solutions of problem (14), (15) from (i) and (ii) in Proposition 8
respectively. Then

(192) u2(x) − u1(x) = CZ(x) ,

where Z is defined in Lemma 15 and C is a constant subject to

|C | ≤ cI f .

Proof. Follows directly from Corollary 3.

18. – End of proof of Theorem 1

Assertion (i) follows from Lemma 15. In order to obtain (ii) we introduce
the cut-off function η ∈ C∞

0 (B2), η(x) = 1 for |x | ≤ 3/2. The function η u satis-
fies the zero Dirichlet conditions on R

n−1\O and the equation L(x, ∂x)(η u) = f1
on R

n
+ with f1 = η f + [L, η]u. Clearly,

(193) M
−m
p ( f1; Kr/e,r ) = M

−m
p ( f ; Kr/e,r )

if r < 3/2 and r > 2e. By the standard local estimate for solutions of the
Dirichlet problem

(194) M
m
p (u; K3r/2,2r ) ≤ c (r2m

M
−m
p ( f ; Kr,er ) + r−n/p||u||L p(Kr,er ))

we have

M
−m
p ([L, η]u; K3/2,2) ≤ c (M−m

p ( f ; K1,e) + ||u||L p(K1,e)) .

Hence, for r ∈ (3/2, 2e)

(195) M
−m
p ( f1; Kr/e,r ) ≤ c(M−m

p ( f ; K1/2,e) + ||u||L p(K1,e)) .

Therefore,
I f1 ≤ c(I f + ||u||L p(K1,e)) .

By (13) and finiteness of I f ,

M
−m
p ( f ; Kρ/e2,eρ) ≤ c

∫ e2r

r/e2
M

−m
p ( f ; Kρ/e,ρ)

dρ

ρ

= o
(

r−m exp
(

−C
∫ 1

r
�(ρ)

dρ

ρ

))
as r → 0 .

This along with (194) and (28) implies (77) with u replaced by η u. There-
fore η u is the solution of problem (14), (15) (with f1 instead of f ) from
Proposition 8 (ii). The result follows from Corollary 4.
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19. – Corollaries of the main result

Clearly, Theorem 1 remains valid if � is replaced by its nondecreasing
majorant

(196) ��(r)= sup
x∈B+

r


 ∑

|α|=|β|=m

|Lαβ(x) − Lαβ | +
∑

|α+β|<2m

x2m−|α+β|
n |Lαβ(x)|


 .

Corollary 5. Let Z be the same solution as in Theorem 1. Then

(197)
∂α

x Z(x) = exp
(

−
∫ 1

r
�(ρ)

dρ

ρ
+ ��(r)

)

×
(

δ0
α′

m!

(m − |α|)! xm−|α|
n + rm−|α|vα(x)

)
,

where |x | < 1, α = (α′, αn) and �� satisfies

��(r) ≤ C
∫ e

r
��(ρ)2 dρ

ρ

and

(198) |∂r�
�(r)| ≤ C��(r)

∫ e

r
eC

∫ ρ

r
��(s) ds

s ��(ρ)
dρ

ρ2
.

For |α| ≤ m − 1 the function vα belongs to
◦

W 1,p
loc (Rn+ \ O) and satisfies

(199)

(
r−n

∫
Kr/e,r

(r |∇vα(x)| + |vα(x)|)pdx

)1/p

≤ cr1−ε

∫ e

r
��ρ)

dρ

ρ2−ε

for r < 1. If |α| = m, the term r |∇vα(x)| should be removed. By ε, we denote a
sufficiently small number depending on n, m, p and Lαβ .

Proof. First, we note that the smallness of � implies

(200) eC
∫ t

τ
�(s) ds

s ≤
(

t

τ

)ε

,

where 0 < τ < t and ε is a sufficiently small number depending on n, m, p
and Lαβ . Hence

∫ 1

r
|ϒ(ρ)|dρ

ρ
≤ C

∫ 1

r

�(t)

t

(
t−n+ε

∫ t

0
�(ρ)ρn−1−εdρ + t1−ε

∫ e

t
�(ρ)ρ−2+εdρ

)
dt.
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Using the monotonicity of �� and changing the order of integration in the last
integral we arrive at

(201)
∫ 1

r
|ϒ(ρ)|dρ

ρ
≤ C

∫ e

r
��(ρ)2 dρ

ρ
.

In order to obtain (198) it suffices to note that by (25)

ϒ(r) ≤ C��(r)

∫ e

r
eC

∫ ρ

r
��(s) ds

s ��(ρ)
dρ

ρ2
.

Furthermore, one can easily check that

r |α|∂α
x Z =

|α|∑
k=0

Q|α|−k(θ, ∂θ )(r∂r )
k Z

where Q|α|−k is a differential operator on the unit sphere of order |α| − k.
Hence and by (24) formula (197) holds with

vα(x) =
|α|∑

k=0

mk Q|α|−k(θ, ∂θ )vk(x) .

Now, (26) implies the estimate

(202)

(
r−n

∫
Kr/e,r

(r |∇vα(x)| + |vα(x)|)pdx

)1/p

≤ c
(

r−n
∫ r

0
e
C
∫ r

ρ
��(s) ds

s ��(ρ)ρn−1dρ + r
∫ e

r
eC

∫ ρ

r
��(s) ds

s ��(ρ)ρ−2dρ

)
.

If |α| = m, the term r |∇vα(x)| should be removed. Estimate (199) follows
from (200), (202) and the monotonicity of ��.

Corollary 6. Let u be a solution from Theorem 1 (ii). If f = 0 on B+
3 , then

for all x ∈ B+
1 the estimate holds:

(203) |∇ku(x)| ≤ c||u||L2(B+
3 )

|x |m−k exp
(

−
∫ 1

|x |
��(ρ)

dρ

ρ
+ C

∫ 1

|x |
��(ρ)2 dρ

ρ

)

where ∇k is the collection of all derivatives of order k, 0 ≤ k ≤ m − 1.

Proof. Let us fix a certain p subject to p > n in Theorem 1. By Sobolev’s
imbedding theorem the integral estimate (31) for w implies pointwise estimates
for the derivatives of w of order less than m. Similarly, (199) implies the
pointwise estimate for vα for |α| < m. By Theorem 1 (ii) and by Corollary 5

|∇ku(x)| ≤ c||u||L p(K1,e)|x |m−k exp
(

−
∫ 1

|x |
��(ρ)

dρ

ρ
+ C

∫ 1

|x |
��(ρ)2 dρ

ρ

)

for k = 1, . . . , m − 1. Here, the L p(K1,e)-norm can be replaced by ||u||L2(B+
3 )

owing to the well-known local estimate (see [ADN], Section 15).
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Corollary 7. If �(r) → 0 as r → 0 then the right-hand side in (26) tends to
0 as r → 0 and

M
m
p (w; Kr/e,r ) = o(rme−C

∫ 1
r

�(s) ds
s ) .

In the case p > n the solution u in Theorem 1 (ii) satisfies

(204)
∂α

x u(x) = exp
(∫ 1

|x |
(−�(ρ) + ϒ(ρ))

dρ

ρ

)

×
(

Cδ0
α′

m!

(m − αn)!
xm−|α|

n + o(|x |m−|α|)
)

as |x | → 0

uniformly with respect to x/|x |. Here α = (α′, αn) is an arbitrary multi-index of
order ≤ m − 1 and δ0

α′ is Kronecker’s index. The function ��(r) is the same as in
Corollary 5. Moreover, (204) remains valid also for |α| = m but then � = o(1)

should be understood as

r−n/p||�||L p(Kr/e,r ) → 0 as r → 0 .

Proof. It suffices to note that the right-hand side in (26) tends to 0 as r → 0

and the right-hand side in (31) is o
(

rm exp
( − C

∫ 1
r �(s) ds

s

))
. The result for

p > n follows by Sobolev’s imbedding theorem applied to the left-hand sides
of (26) and (31).

Corollary 8. Let p > n and

(205)
∫ 1

0
�(ρ)2 dρ

ρ
< ∞ .

Then the solution u from Theorem 1 (ii) satisfies

(206)

∂α
x u(x)

= exp
(

−
∫ 1

|x |
�(ρ)

dρ

ρ

) (
Cδ0

α′
m!

(m − αn)!
xm−|α|

n + o(|x |m−|α|)
)

for |α| ≤ m − 1 uniformly with respect to x/|x |. The same is true for |α| = m if the
symbol o(1) is understood as in Theorem 1 (ii).

Proof. Since �(r) → 0 as r → 0 by (19) and (205) the result follows
from (25) combined with the inequality

∫ 1

0
|ϒ(ρ)|dρ

ρ
≤ C

∫ e

0
�(ρ)2 dρ

ρ

and from Theorem 1 (ii).
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20. – Second order elliptic equations

Example 1. Consider the equation with complex-valued measurable coef-
ficients

−
n∑

i, j=1

∂xi (ai j (x)∂xj u) = 0 in B+
3

complemented by the boundary condition

(207) u(x ′, 0) = 0 for |x ′| < 3 .

We assume that there exists a constant symmetric matrix {ai j }n
i, j=1 with positive

definite real part such that the function

��(r) = sup
B+

r

n∑
i, j=1

|ai j (x) − ai j |

is sufficiently small in B+
3 . In view of Theorem 1 (ii) and Corollary 5

(208)

u(x)= exp

{
−

∫
r<|y|<1

n∑
i=1

(ain(y) − ain)∂yi E(y)dy+O
(∫ 1

|x |
��(ρ)2 dρ

ρ

)}

×
(

Cxn + O
(

|x |2−ε

∫ e

|x |
��(ρ)ρε−2dρ + |x |2−ε

))
,

where ε is a small positive number depending on n and the coefficients ai j .
Here E(x) stands for the Poisson kernel of the equation

n∑
i, j=1

ai j∂xi ∂xj v = 0 in R
n
+ ,

i.e.

E(x) = (det{ai j })−1/2|Sn−1|−1xn


 n∑

k,l=1

bkl xk xl




−n/2

where {bl j } is the inverse of {ai j } (see [H], Section 6.2). Setting this expression
of E(x) into (208), we arrive at (4) where δ = 1, G = R

n
+ and Q is given by (3).

The case of a domain with smooth boundary mentioned in the introduction can
be easily reduced to the present one by changing variables.

Sufficiency of (6) for the inequality |u(x)| ≤ c|x | follows directly from (4).
The necessity of (6) follows from the existence of the solution Z with the
asymptotics (4) (see Theorem 1 (i)). This proves the assertion stated in Intro-
duction.

Example 2. Here, we include the lower order terms but restrict ourselves
to small perturbations of the Laplacian to make the asymptotical formula more
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explicit. Consider the strongly elliptic equation with complex-valued measurable
coefficients

−
n∑

i, j=1

∂xi (ai j (x)∂xj u) +
n∑

i=1

(
a0i (x)∂xi u − ∂xi (ai0(x)u)

) + a00(x)u = 0 in B+
3

complemented by the boundary condition (207). The function �� in this case
is given by

��(r) = sup
B+

r


 n∑

i, j=1

|ai j (x) − δ
j
i | +

n∑
i=1

|xna0i (x)| +
n∑

i=1

|xnai0(x)| + |x2
na00(x)|




and we assume that this function does not exceed a certain constant depending
only on n. Let u be a solution which has a finite Dirichlet integral outside any
neighborhood of the origin and subject to

(209)

(∫
Kr/e,r

|u(x)|2|x |−ndx

)1/2

= o
(

r1−n exp
(

−C
∫ 1

r
�(ρ)

dρ

ρ

))

as r → 0. Then by Theorem 1 (ii) and Corollary 5 the solution u admits the
representation:

(210)

u(x)= exp

{
�(n/2)

2πn/2

∫
|x |<|ξ |<1

(
n∑

i=1

(ain(ξ) − δn
i )∂ξi

(
ξn

|ξ |n
)

+
(

a0n +an0+
n∑

i=1

ai0
ξi

|ξ |

)
ξn

|ξ |n + a00
ξ 2

n

|ξ |n
)

dξ+O
(∫ 1

|x |
��(ρ)2 dρ

ρ

)}

×
(

Cxn + +O
(

|x |2−ε

∫ e

|x |
��(ρ)ρε−2dρ|x |2−ε

))
,

where |x | < 1 and ε is a small positive number depending on n.
The example of the Schrödinger equation with magnetic field given in Intro-

duction is a particular case of the present example. Proof of the necessary and
sufficient condition for the estimate |u(x)| ≤ c|x | is the same as in Example 1.
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