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Optimal Blowup Rates for the Minimal Energy Null
Control of the Strongly Damped Abstract Wave Equation

GEORGE AVALOS – IRENA LASIECKA

Abstract. The null controllability problem for a structurally damped abstract wave
equation –often referred to in the literature as a structurally damped equation– is
considered with a view towards obtaining optimal rates of blowup for the associated
minimal energy function Emin(T ), as terminal time T ↓ 0. Key use is made of the
underlying analyticity of the semigroup generated by the elastic operator A, as
well as of the explicit characterization of its domain of definition. We ultimately
find that the blowup rate for Emin(T ), as T goes to zero, depends on the extent of
structural damping.

Mathematics Subject Classification (2000): 35 (primary), 93 (secondary).

1. – Introduction

With H being a Hilbert space, let linear operator Å : D(Å) ⊂ H → H
be strictly positive and self-adjoint. Moreover, let B ∈ L(H) be positive and
self-adjoint. Therewith, we consider the structurally damped and controlled
abstract model

(1)

{
vt t + Åv + Å

α
2 BÅ

α
2 vt = u on (0, T )

[v(0), vt (0)] = [v0, v1] ∈ D(Å
1
2 ) × H

where the parameter α is in the range 0 ≤ α < 1. Also, the “control” u(t) is
a function in L2(0, T ; H). So as it appears, this model constitutes an abstract

wave equation, under the influence of the structural damping term Å
α
2 BÅ

α
2 vt .

When B = ρ I , where parameter ρ > 0, this system is often referred to as
a “structurally damped” wave equation. With u = 0, the system’s underly-

ing generator A : D(A) ⊂ D(Å
1
2 ) × H → D(Å

1
2 ) × H generates a strongly
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continuous semigroup of contractions {eAt }t≥0 on the space X ≡ D(Å
1
2 ) × H .

This result is well-known, and follows from a straightforward application of the
Lumer Phillips theorem. A much deeper result in this regard is the following:
When α is in the range 1

2 ≤ α ≤ 1, and under the additional assumption that
B be an isomorphism on H , then the semigroup{eAt }t≥0 is analytic (see [3],
[4]). Consequently, those controlled partial differential equations which can be
described by the abstract system (1), when 1

2 ≤ α ≤ 1 and when B is boundedly
invertible on H , will manifest parabolic-like dynamics.

For this model, we wish to consider the null controllability problem. This
problem can be broadly stated as that of finding a control function u, such
that the corresponding solution of (1) is brought from the initial state to rest
at terminal time T . Because the abstract system (1) models parabolic-like
behaviour, including an infinite speed of propagation, one should expect that if
this system is indeed null controllable within the given class of control inputs u,
the property should hold true in arbitrarily short time T > 0. This expectation
is fully in line with what is known about the canonical parabolic controllability
problem; namely the problem of controlling the heat equation, be it via boundary
or interior control (see e.g., [2], [16], [19]). Denoting

(2) X = D(Å
1
2 ) × H ,

we are accordingly led to our working definition of null controllability:

Definition 1. The abstract system (1) is said to be be null controllable,
if for any time T > 0 and arbitrary initial data [v0, v1] ∈ X , there exists a
control function u ∈ L2(0, T ; H) such that the corresponding solution [v, vt ]
to (1) satisfies [v(T ), vt (T )] = [0, 0].

When B = I , the null controllability problem for the system (1) has in
fact been successfully addressed in [13], in the case that Å : D(Å) ⊂ H → H
has compact resolvent. Indeed, in [13] (Theorem 1.1.1 therein), it was shown
that for 1

2 ≤ α < 1, the system (1), with B = I , is null controllable within
the class of controls L2(0, T ; H). The method of proof employed in [13] is
based on spectral properties of the elastic generator, which play a critical role
in the analysis.

The aim of the present paper is twofold. First, we wish to extend the null
controllability result of [13] to more general models, which do not necessarily
admit of a spectral representation. In particular, we will dispense with the assump-
tion on the compactness of the resolvent of Å, and we will not necessarily assume
that B is the identity operator. A second and more important goal in this paper
is to obtain a precise, optimal, estimate for the norm of the “minimal norm steering
control”, as T ↓ 0. In turn, it is known that the rate of blowup for the minimal
norm control is directly related to the “sharpest” constant CT appearing in the
“observability” inequality which is associated with null controllability (see (7)
below). Since the primary intent of [13] was to first and foremost establish
the null controllability for abstract analytic systems such as (1), the issue of
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blowup rates of the minimal norm control was not intended to be addressed
therein. On the other hand, questions related to the singularity of the minimal
energy function have become of central interest in areas such as stochastic and
nonlinear PDE’s, examples of which include the Ornstein Uhlenbeck processes,
and Kolmogorov and Hamilton Jacobi equations [6], [8], [10]. More will be
said on this in what follows.

The task of finding a precise description of the rate of singularity was taken
up–independently from, and essentially simultaneously to, our present effort–
in the follow-up paper [23], where optimal blowup rates are obtained by the
spectral method. Obtaining optimal blowup rates (in nonspectral situations) is
also our present goal. Accordingly, we will be primarily concerned with the
problem of deriving those “sharp” observability estimates which give rise to
the null controllability property stated in Definition 1, without the use of any
underlying spectrality. By contrast to [23], we will employ a special multipliers
method, with a suitably selected scalar weight. Moreover, in this work we
will make use of properties of the fractional powers of the elastic generator A,
as well as the underlying analyticity of the corresponding semigroup {eAt }t≥0.
We believe that our proof is shorter, simpler and applicable to a more general
class of problems than that considered in [23]. On the other hand, the proof
of [23] does provide constructive (suboptimal) steering controls for the finite
dimensional approximations of the overall infinite dimensional system. In short,
the respective results and techniques of proofs in the present paper and in [23]
provide complementary sets of information.

We now briefly explain our task of obtaining the optimal blowup rate for
the minimal norm steering control. Assume for the time being that the null
controllability property given in Definition 1 holds true for the abstract sys-
tem (1), for arbitrary T > 0. Then for each fixed T and given initial data
[v0, v1] ∈ X , one can proceed to solve the associated optimization problem
of finding a control u such that the corresponding solution [v, vt ] satisfies
[v(T ), vt (T )] = [0, 0], and moreover has its L2(0, T ; H) –measurement being
minimized over all L2(0, T ; H)-controls which steer the solution to zero. As-
suming the null controllability property to hold true, this optimization problem
has a wellknown method of solution (see e.g., Appendix B of [12] and [14]).
We denote this minimizer, or minimal norm control, as u0

T (v0, v1). With this
minimizer in hand, for each fixed T > 0 and initial data [v0, v1] ∈ X , we have
the following:

Definition 2. The minimal energy function Emin(T ) is defined as

(3) Emin(T ) ≡ sup
‖[v0,v1]‖X =1

‖u0
T (v0, v1)‖L2(0,T ;H) .

Given the presumed null controllability of the system (1), this function
Emin(T ) is evidently bounded on (0, T ], for any T positive. Moreover, it seems
clear that this function should tend to blowup as T ↓ 0. Capturing the precise
estimate of this blowup is the very objective of this paper. The problem of
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studying the order of the singularity for the minimal energy function is a rather
classical one, and indeed is now well understood for finite dimensions (see [20],
[22]). Concerning infinite dimensions, the recent paper [1] has addressed the
null controllability problem and the related question of blowup for Emin(T ), in
the case of 2-dimensional linear thermoelastic systems. (See also [21], wherein
the estimate e1/T is shown for the heat equation under boundary control.) As
we have already noted, the key to determining the rate of blowup of Emin(T )

as T ↓ 0, is ascertaining the “best” constant CT possible for the observability
inequality associated with null controllability. Our proof below is accordingly
geared toward finding such CT .

In contrast to the spectral approach adopted in [13], [23], in order to obtain
the observability inequality requisite for null controllability (see (7) below), we
will start by invoking a relatively user-friendly multiplier method. However, in
the course of the proof, absolutely critical use is made of intermediate results
which are built, not only on the underlying analyticity of the system (1), but
also on properties of the domains of fractional powers of underlying generator
A : D(A) ⊂ X → X (as explicitly defined in (8) below).

Our main result is as follows:

Theorem 3. With the operator Å as given above, assume that the operator B

has the following properties: (i) B ∈ L(D(Å
α
2 )); (ii) The self-adjoint operator

B ∈ L(H) is strictly positive. Then, with α in the range 0 ≤ α < 1, the abstract
system (1) is null controllable within the class of controls in L2(0, T ; H). The

minimal energy function Emin(T ) = O(T −µα
2 ), where

(4) µα =




3, if 0 ≤ α ≤ 3

4
;

α

1 − α
, if

3

4
< α < 1 .

Remark 4. We point out that Theorem 3 is optimal for 0 ≤ α ≤ 3
4 , in

view of Seidman’s finite dimensional result in [20]. In fact, [20] provides, for
the finite dimensional case, an explicit formula for computing the growth of
the minimal norm. In fact, the growth rate for the case of finite dimensional
truncations of the damped wave equation is of order O(T −3/2), which is precisely
our result for α ≤ 3/4. However, for α > 3

4 the controllability problem is of a
purely infinite dimensional nature, with rates for Emin(T ) which will be arbitrarily
large as α increases. In short, for α ≤ 3

4 the result is in line with the known
finite dimensional theory, but for α > 3

4 the infinite dimensional character of
the problem dominates. The explicit estimate (4) which blows up when α ↑ 1
gives the inference that the system (1) is not null controllable for α = 1, as
was shown outright in [13].

Remark 5. The condition that B be an isomorphism on L(H) (which
is implied by the assumptions in Theorem 3) is made in order to guarantee
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analyticity of the semigroup generated by the operator

A =
(

0 I
−Å −Å

α
2 BÅ

α
2

)
,

with D(A) ⊂ X → X , and for α in the range 1 > α ≥ 1/2 [3]. However,
this latter property holds for a larger class of operators B [3] then those of
isomorphisms. Accordingly, our treatment could be also extended to this class.
For the sake of clarity of the exposition we do not attempt to provide the most
general hypotheses imposed on the operator B.

By way of further motivating the present paper, we note that those null
controllability studies of infinite dimensional systems which consider the issue
of obtaining precise estimates on the norm measurements of minimal steer-
ing controls, are closely connected to current problems arising in the field of
stochastic differential equations. For example, null controllability is tied to the
analysis involved in deriving regularity properties for the so-called Bellman’s
function, a quantity associated with the minimal time control problem. In ad-
dition, null controllability is closely related to the regularity of several Markov
semigroups such those which deal with Orstein-Uhlenbeck processes and related
Kolmolgorov equations. In fact, it can be shown in some cases (see e.g., [5],
Theorem 8.3.3) that null controllability is equivalent to the differentiability and
regularizing effect of the Orstein-Uhlenbeck process. Moreover, the regularity of
solutions to the Kolmogorov equation depends on the singularity of the minimal
energy function as T ↓ 0 [6], [8], [10]. In addition, for some special examples
of Orstein-Uhlenbeck semigroups, it is shown that null controllability is equiv-
alent to the hypoellipticity condition of Hörmander (see [5], p. 112 and [15]).
Also, as shown in [5], optimal estimates for the norms of controls are critical
in being able to prove Liouville’s property for harmonic functions of Markov
processes (see p. 108 of [5]).

We note furthermore that in the deterministic case, the connection between
the asymptotic behavior of the minimal energy function and the regularity of
the Bellman’s function (which describes the minimal time control for the given
control process) is made very clear in the recent paper [9]. It is shown there
that the Holderian regularity of Bellman’s function, and its modulus of conti-
nuity, are determined by the singularity of Emin(T ) when T ↓ 0. In sum, the
issue of obtaining optimal estimates of the singularity of Emin(T ) is not only
a problem of interest in the specific context of null controllability, but is also
key in the solution of problems drawn from several areas of deterministic and
stochastic PDE’s.

Finally, we note that the question of the asymptotic behavior of the minimal
energy function as T → ∞ has very recently drawn considerable attention
(see [18]). In fact, this asymptotic behavior (i.e., the vanishing energy at infinity)
is shown in [18] to be connected with the validity of Liouville’s theorem for
Ornstein-Uhlenbeck operators.
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2. – The needed observability inequality

In order to formulate the necessary and sufficient condition for null con-
trollability we introduce the following adjoint system:

(5)
{

υt t + Åυ + Å
α
2 BÅ

α
2 υt = 0 on (0, T )

[υ(0), υt (0)] = [υ0, υ1] ∈ X .

Associated with this adjoint problem is the so-called energy of the system,
given by

(6) E(t) = 1

2
‖Å

1
2 υ(t)‖2

H + 1

2
‖υt (t)‖2

H .

It is a well-known fact from functional analysis that the validity of the given
null controllability statement is equivalent to the existence of the inequality

(7) (2E(T ))
1
2 ≤ ‖[υ(T ), υt (T )]t‖X ≤ CT ‖υt‖L2(0,T ;H) ,

where [υ, υt ] ∈ C([0, T ];X ) is the solution to the (adjoint) homogeneous prob-
lem (5).

Accordingly, we will work towards the attainment of the inequality (7), a
precise estimation of the singularity of CT as T ↓ 0.

So as to convince the reader that the estimate for CT in (7) also provides
the estimate for the singular behaviour of the minimal energy Emin(T ), we recall
a standard optimization argument in control theory [12], [7], [14]. For this, we
introduce the following functional analytic framework.

On the Hilbert space X we denote A : D(A) ⊂ X → X to be

(8)
A ≡

[ 0 I
−Å −Å

α/2
BÅ

α/2
]

D(A) = {[υ0, υ1] ∈ D(Å
1
2 ) × D(Å

1
2 ) : Å

1−α
υ0 + Å

−α/2
BÅ

α/2
υ1 ∈ D(Å

α
)} .

For 1
2 ≤ α ≤ 1, it is well-known that A generates an analytic contraction

semigroup {eAt }t≥0 on X which is exponentially stable (see [3]). In consequence
of this analyticity, we have the estimate (see e.g., p. 70 of [17])

(9) ‖AηeAt‖L(X ) ≤ Cη

tη
for all t > 0 .
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We introduce next the bounded linear operator LT : L2(0, T ; U ) → X , given by

LT u ≡
∫ T

0
eA(T −t)

( 0
u(t)

)
dt .

In these terms, null controllability is equivalent to showing the inclusion

eAT (X ) ⊂ LT (U),U ≡ L2(0, T ; U ) .

This, in turn, by surjectivity theorem [7] is equivalent to the inequality

(10) ||eA∗T x||X ≤ CT ||L∗
T x||L2(0,T ;U ) for all x ∈ X .

We note that inequality in (10), upon specification of L∗
T , is equivalent to (7).

Assuming the validity of the inequality (10), we can subsequently search for
the minimal norm control which, by standard optimization argument [12] Ap-
pendix B and [14], takes the form

u0
T = −L∗

T (LT L∗
T )−1eAT x

where x = [v0, v1] ∈ X is the initial data of the controlled process. We note that
the existence of the pseudo inverse �T ≡ L∗

T (LT L∗
T )−1eAT , and its boundedness

as a mapping from X into L2(0, T ; U ), results from the validity of (10).
On the other hand, as easily verified,

Emin(T ) = ||�T ||L(X ,L2(0,T ;U ) ≤ CT

where CT here is the same constant which appears in (10).
Thus, the constant CT provides the estimate for the singularity of the

minimal energy function Emin. Since the solution of (5), corresponding to initial
data [υ0, υ1], may be written as

(11)
[ υ(t)
υt (t)

]
= eA

∗t
[ υ0
−υ1

]
,

the inequality in (7) is equivalent to (10). Thus, the crux of the proof of
Theorem 3 is in establishing the inequality (7), while maintaining control of
the singularity of the constant CT as T ↓ 0.
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3. – Technical lemmas

Using the operator theoretic notions established in Section 2, we first prove
some supporting results, which will be key in what follows.

Lemma 6. Let 1 ≥ α ≥ 1
2 . Assume that self-adjoint operator B ∈ L(H)

is strictly positive and moreover satisfies B ∈ L(D(Å
(k+ 1

2 )(1−α)
)) for some given

nonnegative integer k ≥ 1. Then for all integer n = 1, . . . , k and θ ∈ [0, 1], we
have the continuous inclusion

(12) D(An+θ ) ⊂ D(Å
n+ 1

2 −nα+θ(1−α)
) × D(Å

n− 1
2 −(n−1)α+θ(1−α)

).

Proof of Lemma 6. By applying an inductive argument we will first
show the following containment: if the self-adjoint operator B ∈ L(H) is

strictly positive and moreover satisfies B ∈ L(D(Å
(k+ 1

2 )(1−α)
)) for some given

nonnegative integer k ≥ 1, then for n = 1, . . . , k + 1,

(13) D(An) ⊂ D(Å
n+ 1

2 −nα
) × D(Å

n− 1
2 −(n−1)α

) ,

from which the estimate (12) will readily follow by interpolation. In fact,
the interpolation property between fractional powers of domains of Å follows
from the self-adjointness of Å and the analogous interpolation property for the
domains of A follows from the fact that A is invertible and generates an analytic
contraction semigroup [2], [14] (inasmuch as B ∈ L(H) is an isomorphism and
1 ≥ α ≥ 1

2 ).
To this end, we have by definition that for all n = 1, 2, . . . ,

(14) D(An) =
{

[υ0, υ1] ∈ D(A) : A
[ υ0
υ1

]
∈ D(An−1)

}
.

To start, if [υ0, υ1] ∈ D(A), we have from its definition in (8) that

υ1 ∈ D(Å
1
2 ) ;

Åυ0 + Å
α
2 BÅ

α
2 υ1 = g ∈ H ;

whence, upon application of the bounded operator Å
1
2 −α

(as α ≥ 1
2 ), we obtain

Å
3
2 −α

υ0 = Å
1
2 −α

g − Å
1−α

2 BÅ
α−1

2 Å
1
2 v1 ∈ H

(note that we have used the fact that since the self-adjoint B ∈ L(H) and

is moreover in L(D(Å
(k+ 1

2 )(1−α)
)), then by interpolation B ∈ L(D(Å

1
2 (1−α)

)),
via interpolation parameter θ = 1−α

2k+1−α
). We conclude then that the contain-

ment (13) is true for n = 1.
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Assume now that the containment (13) is valid for n = k. Then if [υ0, υ1] ∈
D(An+1), we have

[
υ1

Åυ0 + Å
α/2

BÅ
α/2

υ1

]
= A

[ υ0
υ1

]
∈ D(An) .

In other words,

υ1 ∈ D(Å
n+ 1

2 −nα
)

Åυ0 + Å
α/2

BÅ
α/2

υ1 = g ∈ D(Å
n− 1

2 −(n−1)α
) .

We have then by using regularity assumption imposed on B

Å
(n+1)+ 1

2 −(n+1)α
υ0 =Å

n+ 1
2 −(n+1)α

g − Å
(n+ 1

2 )(1−α)
BÅ

−(n+ 1
2 )(1−α)

Å
n+ 1

2 −nα
υ1 ∈ H,

where we have used the fact that B ∈ L(D(Å
(k+ 1

2 )(1−α)
)); and also n + 1

2 − (n +
1)α ≤ n − 1

2 − (n − 1)α for α ≥ 1
2 . Interpolating now between n and n + 1, for

n = 1, . . . , k gives the asserted result.

Now let � : X → D(Å
1
2 ) denote the projection onto the first coordinate;

i.e., �([υ0, υ1]) = υ0. With this operator in mind, we can proceed to combine
Lemma 6 with the characterization of the domains of the fractional powers of
D(A) in [4].

Corollary 7. Let 1 ≥ α ≥ 1
2 . Assume that self-adjoint operator B ∈ L(H)

is strictly positive and satisfies B ∈ L(D(Å
(k+ 1

2 )(1−α)
)) for some given nonnegative

integer k ≥ 0. Then for all integer n = 0, . . . , k and θ ∈ [0, 1], we have the
continuous inclusion

(15) �D(An+θ ) ⊂ D(Å
n+ 1

2 −nα+θ(1−α)
) .

Proof of Corollary 7. Lemma 6 does not provide the desired containment
for n = 0 and θ ∈ [0, 1). But if self-adjoint B ∈ L(H) is strictly positive (and
so an isomorphism on H ), then by Theorem 1.1 of [4] we have for 0 ≤ θ ≤ 1,

�D(Aθ ) ⊂ D(Å
1
2 +θ(1−α)

)

(and so the condition B ∈ L(D(Å
(k+ 1

2 )(1−α)
)) is irrelevant for n = 0 and

θ ∈ [0, 1]). Combining this with the result of Lemma 6 gives the result.

In turn, we can use this corollary along with analyticity of the semigroup
generated by A in order to establish the following result:
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Lemma 8. Let 1 ≥ α ≥ 1
2 . Assume that self-adjoint operator B ∈ L(H) is

strictly positive and satisfies B ∈ L(D(Å
(k+ 1

2 )(1−α)
)) for some given nonnegative

integer k ≥ 0. Then for all integer n = 0, . . . , k and θ ∈ [0, 1], the solution [υ, υt ]
of (5) satisfies the following estimate:

(16) ‖Å
(n+θ)(1−α)+ 1

2 υ(t)‖H ≤ Cn,θ

1

tn+θ

√
E

(
t

n + 2

)
for all t > 0 .

Proof of Lemma 8. Using Corollary 7, the semigroup representation of
[υ(t), υt (t)] in (11), and the fact that the solution [υ(t), υt (t)] ∈ D(An+θ ) for
t > 0 (by virtue of the analyticity of {eAt }t≥0), we have

(17) ‖Å
n+ 1

2 −nα+θ(1−α)
υ(t)‖H ≤

∥∥∥�An+θeAt
[ υ0
υ1

]∥∥∥
X

.

Now one can use the commutativity property of semigroups and their generators
to write

An+θeAt
[ υ0
υ1

]
= (AeA

t
n+2 )nAθeA

t
n+2 eA

t
n+2

[ υ0
υ1

]
.

Combining this relation with the analytic estimate (9) gives now∥∥∥An+θeAt
[ υ0
υ1

]∥∥∥
X

≤ ‖AeA
t

n+2 ‖n
L(X )‖AθeA

t
n+2 ‖L(X )

∥∥∥eA
t

n+2
[ υ0
υ1

]∥∥∥
X

≤ Cn,θ

(n + 2)n+θ

tn+θ

∥∥∥eA
t

n+2
[ υ0
υ1

]∥∥∥
X

.

This inequality paired with (17) will now establish the assertion.

Next, given 1 > α ≥ 1
2 , we write

α − 1/2

1 − α
=

[
α − 1/2

1 − α

]
+ θ = k + θ

where 0 < θ < 1 and [·] denotes the integral part of a real number.
In other words,

(18)

k =
[

α − 1
2

1 − α

]
;

θ = α − 1
2

1 − α
− k .

In these terms, the exponent (k + θ)(1 − α) + 1
2 appearing in Lemma 8 (with

n = k therein) can be written as

k+1/2−kα+θ(1−α)=(k+θ)+1/2−α(k+θ)= α − 1/2

1 − α
+1/2−α(α − 1/2)

1 − α
=α.

Combining this choice of (k, θ) with Lemma 8 gives now,
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Corollary 9. Let k = [
α− 1

2
1−α

] and θ = α− 1
2

1−α
− k. Assume that a self-adjoint

operator B ∈ L(H) is strictly positive and moreover satisfies B ∈ L(D(Å
α
2 )). Then

for α ∈ [ 1
2 , 1), the solution [υ, υt ] of (5) obeys the following estimate for all t > 0 :

‖Å
α
υ(t)‖H ≤ Cα

t
α−1/2
1−α

√
E

(
t

k + 2

)
.

Proof. After noting that (k + 1
2 )(1 − α) = 1

2α − θ(1 − α) ≤ α
2 , we can

consequently apply inequality (16) of Lemma 8 – taking therein n = k = [
α− 1

2
1−α

],

and θ = α− 1
2

1−α
− k, so as to obtain the desired conclusion.

4. – Proof proper of Theorem 3

In what follows, we will have need of the polynomial

(19) h(t) ≡ t s(T − t)s ,

where

(20) s =




2, if 0 ≤ α ≤ 3

4
2α − 1

1 − α
, if

3

4
< α < 1

(so in particular, s > 2 for given α ∈ ( 3
4 , 1). This function is to be used in a

multiplier method.
To start, we multiply the equation (5) by h(t)υ, and integrate in time and

space so as to have

∫ T

0
h(t)(υt t + Åυ + Å

α/2
BÅ

α/2
υt , υ)H dt = 0 .

An integration of parts with respect to this expression (using implicitly h(0) =
h(T ) = 0) yields now the following:

(21)

∫ T

0
h(t)‖Å

1
2 υ‖2

H dt =
∫ T

0
(υt , (hυ)t )H dt−

∫ T

0
h(t)(Å

α
υ, Å

−α/2
BÅ

α/2
υt )H dt

=−
∫ T

0
h(t)(Å

α
υ, Å

−α/2
BÅ

α/2
υt )H dt+

∫ T

0
h(t)‖υt‖2

H dt

+
∫ T

0
h′(t)(υt , υ)H dt .
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(i) Now, concerning the first term on the right hand side of (21), the
argument will depend on the range of α. When α > 1/2, critical use will
be made of analyticity of the semigroup eAt , along with the technical lemmas
presented in Section 3. We begin with the case α ≤ 1/2, which has a more
direct argument of proof.

Note that if α ∈ [0, 1
2 ), then the dynamical operator A : D(A) ⊂ X → X is

no longer of analytic character (but is of Gevrey’s class for 0 < α < 1/2, [3]).
But on the other hand, Å

α
υ is strictly below the level of energy for such values

of α, and so the Lemma 8, essentially a product of analyticity, is not needed
at all for α ∈ [0, 1

2 ]. Indeed, to estimate the first term on the right hand side
of (21) for α ≤ 1

2 , we proceed as follows:

(22)

∫ T

0
h(t)(Å

α
υ, Å

−α/2
BÅ

α/2
υt )H dt

=
∫ T

0
h(t)(Å

α/2
BÅ

−α/2
Å

α
υ, υt )H dt

≤ ε

2

∫ T

0
h(t)‖Å

α
υ‖2

H dt + Cε

∫ T

0
‖υt‖2

H dt

≤ ε‖Å
α− 1

2 ‖2
L(H)

∫ T

0
h(t)E(t)dt + Cε

∫ T

0
‖υt‖2

H dt ,

where we have used our standing assumption B ∈ L(D(Å
α/2

)).
For the case α > 1/2, we employ the result of Corollary 9 with positive

integer k prescribed therein:∣∣∣∣
∫ T

0
h(t)(Å

α
υ, Å

−α/2
BÅ

α/2
υt )H dt

∣∣∣∣
=

∫ T

0
h(t)(Å

α/2
BÅ

−α/2
Å

α
υ, υt )H dt

≤ C
∫ T

0
h(t)‖Å

α
υ‖H‖υt‖H dt

≤
∫ T

0
h(t)

C

t
α−1/2
1−α

√
E

(
t

k + 2

)
‖υt‖H dt .

This gives then

(23)

∣∣∣∣
∫ T

0
h(t)(Å

α
υ, Å

−α/2
BÅ

α/2
υt )H dt

∣∣∣∣
≤ ε

k + 2

∫ T

0
h(t)E

(
t

k + 2

)
dt + Cε,α

∫ T

0

h(t)

t
2α−1
1−α

‖υt‖2
H dt

≤ ε

k + 2

∫ T

0
h(t)E

(
t

k + 2

)
dt + Cε,αT 2s− 2α−1

1−α

∫ T

0
‖υt‖2

H dt .
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(ii) Moreover, concerning the third term on the right hand side of (21),

(24)

∣∣∣∣
∫ T

0
h′(t)(υt , υ)H dt

∣∣∣∣
≤

∫ T

0
|h′(t)|‖Å

− 1
2 ‖L(H)‖Å

1
2 v‖H‖vt‖H

√
h(t)√
h(t)

dt

≤ ε

2

∫ T

0
h(t)‖Å

1
2 v‖2

H dt + Cε

∫ T

0

[h′(t)]2

h(t)
‖vt‖2

H dt

≤ ε

∫ T

0
h(t)E(t)dt + CεT 2s−2

∫ T

0
‖vt‖2

H dt .

Incorporating (22) (for the case α ≤ 1/2), (23) (for the case α > 1/2) and (24)
into (21) yields now for T ≤ 1,∫ T

0
h(t)‖Å

1
2 υ‖2

H dt

≤ ε

∫ T

0
h(t)E(t)dt + ε

k + 2

∫ T

0
h(t)E

(
t

k + 2

)
dt

+ Cε,αT 2s− 2α−1
1−α

∫ T

0
‖υt‖2

H dt + CεT 2s−2
∫ T

0
‖vt‖2

H dt

+ Cε

∫ T

0
h(t)‖υt‖2

H dt .

After adding to both sides of relation above the term
∫ T

0 h(t)‖υt‖H dt and
considering T ≤ 1 we obtain∫ T

0
(1 − ε)h(t)E(t)dt

≤ ε

k + 2

∫ T

0
h(t)E

(
t

k + 2

)
dt

+ Cε,αT 2s− 2α−1
1−α

∫ T

0
‖υt‖2

H dt + CεT 2s−2
∫ T

0
‖vt‖2

H dt

≤ ε

∫ T
k+2

0
h((k + 2)T )E(t)dt + Cε,αT 2s− 2α−1

1−α

∫ T

0
‖υt‖2

H dt

+ CεT 2s−2
∫ T

0
‖vt‖2

H dt .

Hence,

(25)

∫ T
k+2

0
[(1 − ε)h(t) − εh((k + 2)t)]E(t)dt + (1 − ε)

∫ T

T
k+2

h(t)E(t)dt

≤ Cε,αT 2s− 2α−1
1−α

∫ T

0
‖υt‖2

H dt + CεT 2s−2
∫ T

0
‖vt‖2

H dt .
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Choosing ε > 0 small enough so that

(1 − ε)h(t) − εh((k + 2)t) > 0 on
(

0,
T

k + 2

)
and (1 − ε) > 0

(e.g., we can take ε ≤ (k+1)s

(2+k)s (1+(k+2)s )
), then the estimate (25) and the inherent

dissipativity of the structurally damped system (5) (i.e., E(t) ≤ E(s) for 0 ≤
s ≤ t ≤ T ), give in combination,

(26) E(T )

∫ T

T
k+2

h(t)dt ≤ Cε,αT 2s− 2α−1
1−α

∫ T

0
‖υt‖2

H dt + CεT 2s−2
∫ T

0
‖vt‖2

H dt .

Now,

(27)

∫ T

T
k+2

h(t)dt =
∫ T

T
k+2

t s(T − t)sdt

≥
∫ T

T
k+2

(
t − T

k + 2

)s

(T − t)sdt

=
(

k + 1

k + 2
T

)2s+1

B(s + 1, s + 1)

(see e.g., [11], p. 285, 3.196 no. 3), where B(·, ·) denotes the Beta function,
defined by

β(x, y) =
∫ 1

0
t x−1(1 − t)y−1dt, x ≥ 0, y > 0 .

Combining this inequality with (26) gives finally

E(T ) ≤ Cα(T
−α
1−α + T −3) ,

which inequality for T ≤ 1 can be written as

E(T ) ≤ CαT −µα

∫ T

0
‖vt‖2

H dt ,

where

µα =




3, if 0 ≤ α ≤ 3

4
;

α

1 − α
, if

3

4
< α < 1 .

We conclude therefore, that the abstract system (1) is null controllable, with

the associated observability inequality CT of (7) being O(T −µα
2 ). Subsequently,

a standard argument (see e.g., [14], [1]) gives now that likewise, the minimal

energy function Emin(T ) = O(T −µα
2 ). This completes the proof of Theorem 3.
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