We construct families of quartic and cubic hypersurfaces through a canonical curve, which are parametrized by an open subset in a grassmannian and a Flag variety respectively. Using G. Kempf's cohomological obstruction theory, we show that these families cut out the canonical curve and that the quartics are birational (via a blowing-up of a linear subspace) to quadric bundles over the projective plane, whose Steinerian curve equals the canonical curve
@article{ASNSP_2003_5_2_4_803_0, author = {Pauly, Christian}, title = {On cubics and quartics through a canonical curve}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {803--822}, publisher = {Scuola normale superiore}, volume = {Ser. 5, 2}, number = {4}, year = {2003}, mrnumber = {2040644}, zbl = {1110.14029}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2003_5_2_4_803_0/} }
TY - JOUR AU - Pauly, Christian TI - On cubics and quartics through a canonical curve JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2003 SP - 803 EP - 822 VL - 2 IS - 4 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_2003_5_2_4_803_0/ LA - en ID - ASNSP_2003_5_2_4_803_0 ER -
%0 Journal Article %A Pauly, Christian %T On cubics and quartics through a canonical curve %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2003 %P 803-822 %V 2 %N 4 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_2003_5_2_4_803_0/ %G en %F ASNSP_2003_5_2_4_803_0
Pauly, Christian. On cubics and quartics through a canonical curve. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 2 (2003) no. 4, pp. 803-822. http://archive.numdam.org/item/ASNSP_2003_5_2_4_803_0/
[ACGH] “Geometry of algebraic curves”, vol. 1, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1985. | MR | Zbl
- - - ,[BV] The theta divisor of is very ample if is not hyperelliptic, Duke Math. J. 82 (1996), 503-552. | MR | Zbl
- ,[DK] Polar Covariants of Plane Cubics and Quartics, Adv. Math. 98 (1993), 216-301. | MR | Zbl
- ,[vGvG] Kummer varieties and the moduli spaces of abelian varieties, Amer. J. Math. 108 (1986), 615-642. | MR | Zbl
- ,[vGI] The tangent space to the moduli space of vector bundles on a curve and the singular locus of the theta divisor of the Jacobian, J. Algebraic Geom. 10 (2001), 133-177. | MR | Zbl
- ,[Gr] Quadrics of rank four in the ideal of the canonical curve, Invent. Math. 75 (1984), 85-104. | MR | Zbl
,[IP] Some Properties of Second Order Theta Functions on Prym Varieties, Math. Nachr. 230 (2001), 73-91. | MR | Zbl
- ,[K1] “Abelian Integrals”, Monografias Inst. Mat. No. 13, Univ. Nacional Autónoma Mexico, 1984. | MR | Zbl
,[K2] The equation defining a curve of genus , Proc. of the Amer. Math. Soc. 97 (1986), 214-225. | MR | Zbl
,[KS] A Torelli theorem for osculating cones to the theta divisor, Compositio Math. 67 (1988), 343-353. | EuDML | Numdam | MR | Zbl
- ,[OPP] Subvarieties of and -divisors in the Jacobian, Trans. Amer. Math. Soc., Vol. 350 (1998), 3587-3614. | MR | Zbl
- - ,[PP] Singularities of 2-divisors in the Jacobian, Bull. Soc. Math. France 129 (2001), 449-485. | EuDML | Numdam | MR | Zbl
- ,[We] The surface on Jacobi varieties and second order theta functions, Acta Math. 157 (1986), 1-22. | MR | Zbl
,