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The Evolution of the Scalar Curvature
of a Surface to a Prescribed Function

PAUL BAIRD – ALI FARDOUN – RACHID REGBAOUI

Abstract. We investigate the gradient flow associated to the prescribed scalar cur-
vature problem on compact Riemannian surfaces. We prove the global existence
and the convergence at infinity of this flow under sufficient conditions on the
prescribed function, which we suppose just continuous. In particular, this gives
a uniform approach to solve the prescribed scalar curvature problem for general
compact surfaces.
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1. – Introduction

Let (M, g0) be a compact Riemannian surface without boundary with scalar
curvature R0 = Rg0 . A conformal change of the metric g0 produces a metric
g = e2u g0 having scalar curvature

R = Rg = e−2u(−2�0u + R0) ,

where �0 = �g0 is the Laplace-Beltrami operator with respect to the metric g0.
The prescribed scalar curvature problem is to find conditions on a given

function f : M → R in order that it be the scalar curvature of some metric g
conformal to g0. The corresponding partial differential equation to be solved
for u, is

(1.1) f = e−2u(−2�0u + R0) .

Necessary conditions on the function f , which are stated in (1.5) below, are
needed for the solvability of Problem (1.1). There is an extensive literature
concerning sufficient conditions on f which guarantee a solution. For instance,
in the negative case: R0 ≤ 0, we refer to Aubin [1]-[3], Bismuth [5] and
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Kazdan-Warner [17]. In the positive case, when M = S2; this is the so called
Nirenberg problem. It was first solved by Moser [19] for an even function f
(in other words when M = P2(R), condition (1.5)(iii) stated below is neces-
sary and sufficient). Next, Chang-Yang [7] gave a corresponding version of
Moser’s result for functions satisfying a reflexion symmetry about some plane
f (x1, x2, x3) = f (x1, x2, −x3) under further hypotheses on f . When f is a
smooth rotationally symmetric function, sufficient conditions are given in [10]
(see also [9] and [23]). For more general smooth functions, there is much
interest in the problem (for more details see for example [6], [7], [8], [11] and
the references therein). In particular, Chang-Gursky-Yang [8] obtained several
results dealing with functions f under sufficient conditions on nondegenerate
critical points together with assumptions on the topological degree of a map
depending on f .

When f is constant, a solution is given by the classical uniformisation
theorem. Hamilton [14] provided an elegant way of obtaining the solution in
this case, by considering the evolution of the metric g under the Ricci flow:

(1.2) ∂t g = (r − R)g ,

where r is the average value of R. He was able to establish the global existence
of the flow and its convergence when r < 0, as well as to solve partially the
singular case M = S2. This latter case was completely resolved later by
Chow [13] (for new approaches see Bartz-Struwe-Ye [4] and also Chen [12]
for the Calabi flow). In a recent paper, Struwe [22] gives a unified treatment
to the Hamilton-Ricci flow (1.2) and the Calabi flow by using concentration-
compactness methods.

In this paper, we investigate the evolution problem corresponding to the
prescribed scalar curvature equation (1.1) when f is not necessarily constant.
Without loss of generality, we may suppose that the background metric g0 has
constant scalar curvature R0 (recall that R0 = 2k0 where k0 is the Gaussian
curvature; the sign of k0 depends only on the topology of M). A variational
approach to problem (1.1) is to consider the functional

(1.3) J (u) =
∫

M
|∇u|2dµ0 + 2k0

∫
M

udµ0 ,

on the Sobolev space H = H 1(M) under the constraint

(1.4) u ∈ X := {u ∈ H : L(u) = 2k0 Vol(M)}

where L : H → R is defined by L(u) = ∫
M f e2udµ0. We suppose from now

on that f ∈ C0(M). Since for any u ∈ H : we have epu ∈ L1(M, g0) for all
p ∈ R (see [2]), then the function L is well defined on H . In order that the
set X is non-empty, we will make the following hypothesis on f , which is
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necessary in order to solve Problem (1.1). Depending upon the sign of k0, we
suppose that one of the following conditions is satisfied:

(1.5)




(i)
∫

M f dµ0 < 0 when k0 < 0 ,

(ii)
∫

M f dµ0 < 0 and supx∈M f (x) > 0 when k0 = 0 ,

(iii) supx∈M f (x) > 0 when k0 > 0 .

Note that when f ∈ C1(S2), there is a further necessary condition due to
Kazdan-Warner [16] which states that if Problem (1.1) has a solution u, then f
must satisfy

(1.6)
∫

S2
∇ f.∇xi e

2udµ0 = 0 ,

for each eigenfunction xi (1 ≤ i ≤ 3) corresponding to the first eigenvalue of
the Laplacian.

The functionals J and L are analytic and their gradients are given respec-
tively by

(1.7) 〈∇ J (u), φ〉 = 2
∫

M
∇u.∇φdµ0 + 2k0

∫
M

φdµ0 for all φ ∈ H ,

thus,

(1.8) ∇ J (u) = 2(−�0 + I )−1(−�0u + k0)

and

(1.9) 〈∇L(u), φ〉 = 2
∫

M
f e2uφdµ0 for all φ ∈ H ,

thus,

(1.10) ∇L(u) = 2(−�0 + I )−1( f e2u) ,

where I is the identity map of H and 〈.,.〉 denotes the scalar product on H .
Since ∇L(u) �= 0 for all u ∈ X , the set X is a regular hypersurface of H .

A unit normal is well defined at any point of u ∈ X and is given by

(1.11) N (u) = ∇L(u)

‖∇L(u)‖ ,

where ‖.‖ denotes the norm of H . This allows us to consider the gradient of
the functional J with respect to the hypersurface X ; this is defined by

(1.12) ∇X J (u) = ∇ J (u) − 〈∇ J (u), N (u)〉N (u) .
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We now introduce our evolution problem as the negative gradient flow of J
with respect to the hypersurface X :

(1.13)
{

∂t u = −∇X J (u)

u(0) = u0 ∈ X .

If the flow (1.13) exists for all time and converges at infinity, then the limit
function u∞ is a solution of (1.1) and so corresponds to a metric of scalar
curvature f . As such, this flow is a natural geometric deformation and an
efficient tool to produce metrics with prescribed scalar curvature in a given
conformal class. In this paper we prove the global existence of a solution
of (1.13) and show its convergence as t → ∞ under sufficients conditions on
the prescribed scalar curvature f . More precisely, our results are as follows:

Theorem 1. Let (M, g0) be a compact Riemannian surface without boundary
and let f ∈ C0(M) satisfy the appropriate compatibility condition (1.5). Then
for any u0 ∈ X, where X is as in (1.4), there exists a unique global solution
u ∈ C∞([0, ∞), H) of (1.13), satisfying u(t) ∈ X for all t ≥ 0. Furthermore, the
energy identity

(1.14)
∫ t

0
‖∂su(s)‖2ds + J (u(t)) = J (u0) holds for all t > 0 .

To prove the convergence of the global solution, we will consider two
separate cases: k0 ≤ 0 and k0 > 0. For k0 ≤ 0, our result is as follows:

Theorem 2. Let u0 ∈ X and u : [0, ∞) → H be the solution of (1.13) obtained
in Theorem 1.

(i) Suppose that k0 = 0. Then u converges in H to a function u∞ ∈ H 2(M) ∩
C1+α(M) ( for all 0 < α < 1) as t → ∞. Moreover u∞ + λ is a solution
of (1.1) for some constant λ.

(ii) Suppose that k0 < 0. There exists a positive constant C depending only on
f −(x) = sup(− f (x), 0) and M such that if u0 satisfies

(1.15) eτ‖u0‖2
sup
x∈M

f (x) ≤ C ,

where τ > 1 is a constant depending only on M then u converges in H to a
solution u∞ ∈ H 2(M) ∩ C1+α(M) ( for all 0 < α < 1) of (1.1) as t → ∞.
In particular, if f ≤ 0, then u converges in H to a solution u∞ ∈ H 2(M) ∩
C1+α(M) ( for all 0 < α < 1) of (1.1) as t → ∞, for all u0 ∈ X.

Remark 1. We will see in the proof of Part (ii) of Theorem 2 that
C = (− infx∈M f (x))C where C is a constant depending on Vol({x ∈ M :
f (x) ≤ 1

2 infx∈M f (x)}) and M .
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Corollary 1.
(i) Suppose that k0 = 0 and let f ∈ C0(M) satisfy the compatibility condi-

tion (1.5)(ii), then Problem (1.1) admits a solution u ∈ H 2(M) ∩ C1+α(M)

( for all 0 < α < 1).
(ii) Suppose that k0 < 0 and let f ∈ C0(M) be a function which satisfies the

compatibility condition (1.5)(i). There exists a positive constant C depending
only on f − and M such that if f satisfies

sup
x∈M

f (x) ≤ C ,

then Problem (1.1) admits a solution u ∈ H 2(M) ∩ C1+α(M) ( for all 0 <

α < 1). In particular, if f ≤ 0, then Problem (1.1) admits a solution u ∈
H 2(M) ∩ C1+α(M) ( for all 0 < α < 1).

Part (i) of Corollary 1 can be obtained by a direct variational method as
in [1]. When k0 < 0, the variational method fails except for f < 0. Part (ii) of
Corollary 1 has been obtained by Aubin [3] and Bismuth [5] when f ∈ Cα(M)

(0 < α < 1) by using the method of lower and upper solutions together with a
fixed point theorem in the Hölder space C2+α(M). In [5], it was shown how
the constant C depends on f −.

We now consider the singular case k0 > 0. Without loss of generality, we
may suppose that M = S2, with the standard Euclidean metric. We will observe
concentration phenomenae; this is because the group of conformal diffeomor-
phisms of the standard sphere is not compact. By considering functions f
invariant under a group G of isometries of S2, we will establish convergence.

Recall that a function f on S2 is said to be invariant under G or f is
G-invariant if it satisfies

f (σ x) = f (x), for all x ∈ S2 and σ ∈ G .

We let � denote the set of fixed points of G, that is

� = {x ∈ S2 : σ x = x for all σ ∈ G} .

We obtain the following result:

Theorem 3. Let f ∈ C0(S2) be a function invariant under a group G of
isometries of S2 with supx∈S2 f (x) > 0. Let u0 ∈ X be invariant under G and let
u : [0, ∞) → H be the solution of (1.13) given by Theorem 1. If either

(i) � = ∅; or
(ii)

(1.16) sup
P∈�

f (P) ≤ 2e−J (u0)/4π ,

then u converges in H to a G-invariant solution u∞ ∈ H 2(M)∩C1+α(S2) ( for
all 0 < α < 1) of (1.1) as t → ∞.
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Let P ∈ S2, r > 0, and let z be the coordinate obtained by stereographic
projection from S2 − {P} (P can be choosen to be the north pole of S2) to
an equatorial plane. We denote by φP,r the conformal transformation of S2

given by φP,r (z) = r z. For a suitable choice of the initial data u0, we have
the following consequence:

Corollary 2. Let f ∈ C0(S2) be a function with supx∈S2 f (x) > 0 which is
invariant under a group G of isometries of S2. If either

(i) � = ∅; or
(ii) there exist P0 ∈ � and r0 > 0 satisfying

(1.17) sup
P∈�

f (P) ≤ 1

4π
Max

(
0,

∫
S2

f ◦ φP0,r0dµ0

)
,

then Problem (1.1) admits a G-invariant solution u ∈ H 2(S2)∩C1+α(S2) ( for
all 0 < α < 1). In particular if

(1.18) sup
P∈�

f (P) ≤ 1

4π
Max

(
0,

∫
S2

f dµ0

)
,

then Problem (1.1) has a G-invariant solution u ∈ H 2(M) ∩ C1+α ( for all
0 < α < 1).

Corollary 2 generalises the result of Moser [19] obtained for an even func-
tion. It gives a complete study of the problem of prescibed scalar curvature for
a function invariant under a group of isometries on S2.

Remark 2.
1) In the above results, f is supposed only continuous. If f is in C2(S2), then

it is easy to see that if � f (P) > 0 for P ∈ � with f (P) = supx∈� f (x),
then (1.17) is satisfied.

2) Inequality (1.18) (hence (1.17)) is sharp. For example, let ε > 0 and take
f (x) = εx3. Let G be the group of isometries which fixes the north and
south poles of S2 then f is G-invariant and

sup
P∈�

f (P) = ε,
1

4π

∫
S2

f dµ0 = 0 .

However, the function f is not the scalar curvature of a metric conformal
to g0, by the obstruction (1.6) of Kazdan-Warner.
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2. – Global existence

We set F(u) = −∇X J (u). Using (1.11) and (1.12), equation (1.13) be-
comes

(2.1)

{
∂t u = F(u) = −∇ J (u) + 〈∇ J (u), ∇L(u)〉 ∇L(u)

‖∇L(u)‖2

u(0) = u0 ∈ X .

Since the functionals J , L are in C∞(H) and ∇L(u) �= 0 for all u ∈ H , it
follows that F is in C∞(H). Thus, from the classical Cauchy-Lipschitz theorem,
there exists a solution u ∈ C∞([0, T ); H) of equation (2.1) for some T > 0.

We now show that the solution u is globally defined on [0, ∞). Rewrite
∇ J (u), given by (1.8), in the form

(2.2) ∇ J (u) = −2((−�0 + I )−1 − I )u + 2k0 .

From (2.1), we observe that

(2.3) ‖F(u)‖ ≤ 2‖∇ J (u)‖ .

Using the fact that (−�0 + I )−1 : H → H is a continuous linear map, we
deduce from (2.2) and (2.3) that

(2.4) ‖F(u)‖ ≤ C‖u‖ + C .

It follows from inequality (2.4) that

(2.5) ∂t‖u‖2 ≤ C1‖u‖2 + C1 ,

where C1 is a positive constant. By integrating (2.5) between 0 and t (t < T ),
we obtain

(2.6) ‖u(t)‖ ≤ ‖u0‖eC1T/2 + eC1T/2 .

Inequality (2.6) guarantees that the solution u may be extended for all time.
Next, on taking the inner product of (2.1) with ∇L(u), we see that

∂t L(u) = 〈∇L(u), ∂t u〉 = 0 .

Thus, for all t ≥ 0 we have L(u(t)) = L(u0) = 2k0Vol(M), so that u(t) ∈ X
for all t ≥ 0. To complete the proof of Theorem 1, it remains to prove that u
satisfies the energy inequality (1.14). On taking the inner product of (1.13)
with ∂t u, we obtain

(2.7) ‖∂t u‖2 = −〈∇ J (u), ∂t u〉 + 〈∇ J (u), N (u)〉〈N (u), ∂t u〉 .

Since

〈N (u), ∂t u〉 = ∂t L(u)

‖∇L(u)‖ = 0 ,

we deduce from (2.7) that

(2.8) ‖∂t u‖2 = −〈∇ J (u), ∂t u〉 = −∂t J (u) .

Integrating (2.8) between 0 and t , we obtain inequality (1.14). This completes
the proof of Theorem 1.
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3. – Uniform bounds

We prove that if the solution u of equation (1.13) is uniformly bounded
in H with respect to time, then u converges at infinity. More precisily,

Proposition. Let u : [0, ∞) → H be the solution of (1.13) obtained in
Theorem 1. Suppose that for all t > 0, u satisfies

(3.1) ‖u(t)‖ ≤ C ,

where C is a positive constant. Then u(t) converges in H to a function u∞ ∈
H 2(M) ∩ C1+α(M)(0 < α < 1) as t → ∞. Moreover, if k0 �= 0 then u∞ is
a solution of (1.1). And if k0 = 0, then u∞ + λ is a solution of (1.1) for some
constant λ.

Proof. The energy inequality (1.14) and (3.1) imply

∫ ∞

0
‖∂su(s)‖2ds ≤ J (u0) + C1 ,

where C1 is a positive constant. Thus, there exists a sequence tk → ∞ such
that

(3.2) ‖∂t u(tk)‖ = ‖∇X J (u(tk))‖ → 0 .

From (3.1), we have ‖u(tk)‖ ≤ C , so there exist a function u∞ ∈ H and a
subsequence of tk (that we also call tk), such that

(3.3)
{

u(tk) → u∞ weakly in H

u(tk) → u∞ strongly in L2(M) ,

and by the Moser-Trudinger inequality [18]

(3.4)
∫

M
epu(tk )dµ0 ≤ Cp for all p ∈ R ,

where Cp is a positive constant. We first show that u∞ ∈ X . Using (3.3)
and (3.4), a computation shows that

(3.5) lim
k→∞

∫
M

f e2u(tk )dµ0 =
∫

M
f e2u∞dµ0 .

Since u(tk) ∈ X : that is
∫

M f e2u(tk )dµ0 = 2k0Vol(M), we deduce from (3.5)
that u∞ ∈ X .

Now, we prove that ∇X J (u∞) = 0. Recall that

(3.6) ∇X J (u(t)) = ∇ J (u(t)) − 〈∇ J (u(t)), ∇L(u(t))〉 ∇L(u(t))

‖∇L(u(t))‖2
,
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with

(3.7) ∇ J (u(t))= 2(−�0+I )−1(−�0u(t)+k0)=−2((−�0+I )−1−I )u(t)+2k0 ,

and

(3.8) ∇L(u(t)) = 2(−�0 + I )−1( f e2u(t)) .

Using (3.3), (3.5) and since (−�0 + I )−1 : H → H is a compact operator, it is
not difficult to show from (3.6), (3.7), (3.8) that ∇X J (u(tk)) converges weakly
in H to ∇X J (u∞) and

(3.9) lim
k→∞

‖u(tk) − u∞‖ = 0 .

It follows from (3.2) that ∇X J (u∞) = 0. Hence, we have

(−�0 + I )−1(−�0u∞ + k0) = η(u∞)(−�0 + I )−1( f e2u∞) ,

where η(u∞) is a constant. Hence,

(3.10) −�0u∞ + k0 = η(u∞) f e2u∞ .

A standard elliptic argument gives u∞ ∈ H 2(M) ∩ C1+α(M) (for all 0 < α <

1). If k0 �= 0: since u∞ ∈ X , by integrating (3.10) on M , we deduce that
η(u∞) = 1

2 . Thus u∞ is a solution of (1.1).
If k0 = 0, then η(u∞) �= 0, otherwise from (3.10), u∞ is a constant

map; since u∞ ∈ X , it follows that
∫

M f dµ0 = 0 and this contradicts the
hypothesis (1.5)(ii). Now, if we multiply (3.10) by e−2u∞ and we integrate on
M , then from (1.5)(ii) we observe that η(u∞) > 0. And it is easy to see that
v∞ = u∞ + 1

2 log(2η(u∞)) = u∞ + λ(u∞) is a solution of (1.1).
It remains to prove that limt→∞ ‖u(t) − u∞‖ = 0. To this end, we need

the following version of the so-called Lojasiewicz-Simon inequality.

Lemma 1. Let X be an analytic manifold modelled on a Hilbert space H and
suppose that G : X → R is an analytic function on a neighborhood of a point ū ∈ X
satisfying

(i) ∇G(ū) = 0,

(ii) ∇2G(ū) : Tū X → Tū X has finite dimensional kernel.

Here, ∇G denotes the gradient in X of G and we have identified the second
derivative d2G(ū) : Tū X × Tū X → R with the linear map ∇2G(ū) : Tū X → Tū X.
Then, there are constants σ > 0 and 0 < θ < 1

2 such that if u ∈ B(ū, σ ), where
B(ū, σ ) is the geodesic ball of radius σ centered at ū, then

(3.11) ‖∇G(ū)‖ ≥ |G(u) − G(ū)|1−θ .
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Proof of Lemma 1. The proof follows closely the proof of Theorem 3
of [21]. It suffices to take an analytic chart φ : U → V where U is a
neighborhood of ū and V is a neighborhood of 0 in H with φ(ū) = 0. The
functional G = G ◦ φ−1 : V ⊂ H → R is analytic in a neighborhood of 0 and
condition (i) gives ∇G(0) = 0 (here ∇G is the gradient of G in H). Using
condition (ii), we adapt the proof of [21] to G. So there are constants σ > 0
and 0 < θ < 1

2 such that if ‖x‖ < σ the functional G satisfy

‖∇G(0)‖ ≥ |G(x) − G(0)|1−θ ,

and the proof of Lemma 1 follows immediately. We omit the details.

By using Lemma 1, we will show that the functional J satisfies the in-
equality (3.11) with ū = u∞. Since L is an analytic function on H then X
is an analytic manifold. The functional J : X ⊂ H → R is analytic and
∇X J (u∞) = 0. Let u∞ : H → Tu∞ X be the projection onto Tu∞ X . Us-
ing formulae (3.6), (3.7) and (3.8), a straightforward computation gives for all
v ∈ Tu∞ X :

∇2 J (u∞)(v) = 2v + u∞(T (v)) ,

with

T (v)= −2(−�0 + I )−1(v)−4
〈

∇ J (u∞),
∇L(u∞)

‖∇L(u∞‖2

〉
(−�0 + I )−1( f e2u∞v)

+
〈

∇ J (u∞),
∇L(u∞)

‖∇L(u∞‖2

〉 〈
v,

∇(‖∇L(u∞)‖)
‖∇L(u∞)‖

〉
∇L(u∞) .

It easy to check that T is a compact operator. Since u∞ is a continuous map,
it follows that u∞ ◦ T is also compact. Thus, we deduce that the kernel of
∇2 J (u∞) has finite dimension. By Lemma 1, there are constants σ > 0 and
0 < θ < 1

2 such that if ‖u − u∞‖ < σ then

(3.12) ‖∇X J (u)‖ ≥ |J (u) − J (u∞)|1−θ .

We are now in a position to prove that limt→∞ ‖u(t) − u∞‖ = 0 as in [15]
and [21]. From (3.9), we see that for all ε > 0 there exists N > 0 such that

‖u(tn) − u∞‖ <
ε

2
and

1

θ
(J (u(tn) − J (u∞))θ <

ε

2
for all n ≥ N .

Let t∗ = sup{t ≥ tN : ‖u(s)−u∞‖ < σ for all s ∈ [tN , t]}. Suppose that t∗ < ∞.
If there exists t̄ such that J (u(t̄)) = J (u∞) then since J is noincreasing and
from the uniqueness of the solution u of (1.13), it follows that u(t) ≡ u∞ for
all t ≥ t̄ . So the solution is stationary. Otherwise, we obtain for all t ∈ [tN , t∗]

(3.13) −∂t {J (u(t)) − J (u∞)}θ = −θ∂t J (u(t)){J (u(t)) − J (u∞)}θ−1 .
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From (2.8), we have

(3.14) −∂t J (u(t)) = ‖∂t u(t)‖‖∇X J (u(t))‖ .

If we put (3.14) into (3.13) and use the estimate (3.12), we obtain

(3.15) −∂t {J (u(t) − J (u∞)}θ ≥ θ‖∂t u(t)‖ .

Integrating inequality (3.15) between tN and t∗, since J is noincreasing, we
deduce

(3.16)
∫ t∗

tN

‖∂t u(t)‖dt ≤ 1

θ
(J (u(tN )) − J (u∞))θ <

ε

2
.

But from (3.16) and for sufficiently small ε, we have

‖u(t∗) − u∞‖ ≤
∫ t∗

tN

‖∂t u(t)‖dt + ‖u(tN ) − u∞‖ ≤ ε < σ .

This contradicts the definition of t∗, hence t∗ = ∞. So, from (3.16) we obtain∫ ∞

tN

‖∂t u(t)‖dt ≤ ε

2
.

It follows immediately that ‖u(t )− u∞‖ ≤ ε for all t ≥ tN . This completes the
proof of the proposition.

4. – Convergence

To obtain convergence, we have to prove uniform boundedness in H of
the global solution u : [0, ∞) → H of (1.13) obtained in Theorem 1.

The null case. From the energy inequality (1.14), we deduce that J (u(t))≤
J (u0) for all t ≥ 0. Since k0 = 0, it follows that

(4.1)
∫

M
|∇u(t)|2dµ0 ≤

∫
M

|∇u0|2dµ0 .

To show that u is uniformly bounded in H , it remains to prove, that for all t ≥ 0,∫
M u2(t)dµ0 ≤ C where C is a positive constant. On taking the inner product

of (1.13) with the constant function 1 and using formulae (1.11) and (1.12), we
obtain

(4.2)
〈∂t u(t), 1〉 = −〈∇ J (u(t)), 1〉

+ 1

‖∇L(u(t))‖2
〈∇ J (u(t)), ∇L(u(t))〉〈∇L(u(t)), 1〉 .
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Since k0 = 0 and u(t) ∈ X for all t ≥ 0, it is easy to see from (1.7) and (1.9),
that 〈∇ J (u(t)), 1〉 = 0 and 〈∇L(u(t)), 1〉 = 0. So (4.2) implies

〈∂t u(t), 1〉 =
∫

M
∇∂t u(t)∇1dµ0 +

∫
M

∂t u(t)1dµ0 = 0 ,

thus

(4.3)
∫

M
u(t, .)dµ0 ≡ C ste for all t ≥ 0 .

We recall Poincaré’s inequality

(4.4)
∫

M
u2dµ0 ≤ 1

λ1

∫
M

|∇u|2dµ0 + 1

Vol(M)

(∫
M

udµ0

)2

,

where λ1 is the first eigenvalue of �0. Combining (4.1), (4.3), and (4.4), we
deduce that, for all t ≥ 0 ∫

M
u2(t)dµ0 ≤ C ,

where C is a positive constant depending on M and u0. This completes the
proof of Part (i) of Theorem 2.

The negative case. Without loss of generality, we may suppose that
k0 = −1. The proof of Part (ii) of Theorem 2 is essentially based on the
following non-concentration lemma.

Lemma 2. Let K be any measurable subset of M with Vol(K ) > 0. Then there
exists a constant CK ≥ 1 depending on M and Vol(K ) such that the global solution
u : [0, ∞) → H of (1.13) satisfies for all t ≥ 0

(4.5)
∫

M
e2u(t)dµ0 ≤ CK eα‖u0‖2

Max
((∫

K
e2u(t)dµ0

)α

, 1
)

,

where α > 1 is a constant depending only on M.

Proof of Lemma 2. We fix t ≥ 0. To prove inequality (4.5), we first
establish the following estimate

(4.6)
∫

M
udµ0 ≤ |J (u0| + C

Vol(K )
+ 4Vol(M)

Vol(K )
Max

(∫
K

udµ0, 0
)

,

where C > 0 is a constant depending on M .
We may suppose that

∫
M udµ0 > 0, otherwise the estimate (4.6) is trivial.

The energy inequality (1.14) implies

(4.7)
∫

M
|∇u|2dµ0 ≤ J (u0) + 2

∫
M

udµ0 .
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Combining (4.7) and the Poincaré inequality (4.4), we have

(4.8)
∫

M
u2dµ0 ≤ 1

λ1
J (u0) + 2

λ1

∫
M

udµ0 + 1

Vol(M)

(∫
M

udµ0

)2

.

We first suppose that
∫

K udµ0 ≤ 0. Since
∫

M udµ0 > 0, we have

(∫
M

udµ0

)2

≤
(∫

K c
udµ0

)2

≤ Vol(K c)

∫
M

u2dµ0 ,

where K c = M \ K . Thus, by putting this last inequality into (4.8), we obtain

(4.9)
Vol(K )

Vol(M)

∫
M

u2dµ0 ≤ 1

λ1
J (u0) + 2

λ1

∫
M

udµ0 .

By Young’s inequality

(4.10)
2

λ1

∫
M

udµ0 ≤ Vol(K )

2Vol(M)

∫
M

u2dµ0 + 2Vol2(M)

λ2
1Vol(K )

.

If we put (4.10) into (4.9), we deduce that

(4.11)
∫

M
u2dµ0 ≤ 2Vol(M)

λ1Vol(K )
|J (u0)| + 4Vol3(M)

λ2
1Vol2(K )

.

From (4.11), it follows that

(4.12)
(∫

M
udµ0

)2

≤ 2Vol2(M)

λ1Vol(K )
|J (u0)| + 4Vol4(M)

λ2
1Vol2(K )

.

Since

(4.13)
2Vol2(M)

λ1Vol(K )
|J (u0)| ≤ |J (u0)|2 + Vol4(M)

λ2
1Vol2(K )

,

by combining (4.12) and (4.13), we obtain

(4.14)
∫

M
udµ0 ≤ |J (u0| + C

Vol(K )
,

where C > 0 is a constant depending on M ; hence the estimate (4.6) is
established.

We now suppose that
∫

K udµ0 > 0. From (4.8), we obtain

(4.15)

Vol(K )

Vol(M)

∫
M

u2dµ0 ≤ 1

λ1
J (u0) + 2

λ1

∫
M

udµ0

+ 1

Vol(M)

(∫
K

udµ0

)2

+ 2

Vol(M)

(∫
K

udµ0

) (∫
K c

udµ0

)
.
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Using Young’s inequality, we deduce

(4.16)

2

Vol(M)

(∫
K

udµ0

) (∫
K c

udµ0

)

≤ 2Vol(K c)

Vol(K )Vol(M)

(∫
K

udµ0

)2

+ Vol(K )

2Vol(M)

(∫
K c

u2dµ0

)
.

Combining (4.15) and (4.16), we obtain

(4.17)
Vol(K )

2Vol(M)

∫
M

u2dµ0 ≤ 1

λ1
J (u0) + 2

λ1

∫
M

udµ0 + 3

Vol(K )

(∫
K

udµ0

)2

.

By Young’s inequality once more

2

λ1

∫
M

udµ0 ≤ Vol(K )

4Vol(M)

∫
M

u2dµ0 + 4Vol2(M)

λ2
1Vol(K )

,

thus, by (4.17)

(4.18)
∫

M
u2dµ0 ≤ 4Vol(M)

λ1Vol(K )
|J (u0| + 16Vol3(M)

λ2
1Vol2(K )

+ 12Vol(M)

Vol2(K )

(∫
K

udµ0

)2

.

It is clear that (4.18) gives∫
M

udµ0 ≤ |J (u0)| + C

Vol(K )
+ 4Vol(M)

Vol(K )

∫
K

udµ0 ,

where C > 0 is a constant depending on M . Estimate (4.6) is therefore estab-
lished.

Let us prove inequality (4.5). We recall Aubin’s inequality (see [2]):

(4.19)
∫

M
e2udµ0 ≤ C exp

(
β

∫
M

|∇u|2dµ0 + 2

Vol(M)

∫
M

udµ0

)
,

where C and β are two positive constants depending on M . In view of (4.7),
inequality (4.19) becomes

(4.20)

∫
M

e2udµ0 ≤ C exp
(

β J (u0) + 2
(

β + 1

Vol(M)

) ∫
M

udµ0

)

≤ C exp
(

A‖u0‖2 + B
∫

M
udµ0

)
,

where A, B and C are positive constants depending only on M .
From (4.6) and (4.20), we deduce that

(4.21)
∫

M
e2udµ0 ≤ CK exp

(
A1‖u0‖2 + B1

Vol(K )
Max

(∫
K

udµ0, 0
))

,

where CK ≥ 1 is a constant depending on M and Vol(K ), and A1, B1 are
positive constants depending only on M .

Using Jensen’s inequality, (4.21) gives the estimate (4.5) of Lemma 2.
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Now, estimate (4.5) in Lemma 2 allows us to bound uniformly
∫

M e2u(t)dµ0.
Let f +(x) = sup( f (x), 0) and K = { x ∈ M : f (x) ≤ 1

2 infx∈M f (x)}.
Since for all t ≥ 0, u(t) ∈ X , we have

(4.22) 2Vol(M) =
∫

M
− f e2u(t)dµ0 =

∫
M

f −e2u(t)dµ0 −
∫

M
f +e2u(t)dµ0 ,

which gives, setting t = 0

2Vol(M)

(− infx∈M f (x))
≤

∫
M

e2u0dµ0 .

From Aubin’s inequality (4.19), we have the estimate

(4.23)
∫

M
e2u0dµ0 ≤ C1eC1‖u0‖2

,

where C1 > 1 depends on M . Hence

(4.24)
2Vol(M)

(− infx∈M f (x))
≤ C1eC1‖u0‖2

.

Now, let

γ = CK (8C1)
αe(C1+1)α‖u0‖2

and τ = α(C1 + 1) − C1 ,

where CK ≥ 1 and α > 1 are the constants in Lemma 2. Let us make precise
the hypothesis (1.15) of Theorem 2. We suppose that u0 satisfies:

(4.25) eτ‖u0‖2
sup
x∈M

f (x) ≤ C ,

where we take C = − infx∈M f (x)/(8αCK Cα−1
1 ). Under (4.25) we shall prove

that for all t ≥ 0,

(4.26)
∫

M
e2u(t)dµ0 ≤ 2γ .

Set I = {t ≥ 0 :
∫

M e2u(s)dµ0 ≤ 2γ for all s ∈ [0, t]}. From (4.23) it follows
that I �= ∅ since 0 ∈ I . Let T = sup I . Suppose that T < ∞; from the
continuity of the map t → ∫

M e2u(t)dµ0, it follows that

(4.27)
∫

M
e2u(T )dµ0 = 2γ .
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We distinguish two cases: either
∫

M f +e2u(T )dµ0 ≤ 1
2

∫
M f −e2u(T )dµ0 or∫

M f +e2u(T )dµ0 > 1
2

∫
M f −e2u(T )dµ0. In the first case, from (4.22) we have

(4.28)
∫

M
f −e2u(T )dµ0 ≤ 8Vol(M) .

Since f −(x) ≥ 1
2 (− infx∈M f (x)) for all x ∈ K , (4.28) implies

(4.29)
∫

K
e2u(T )dµ0 ≤ 16Vol(M)

(− infx∈M f (x))
.

Combining (4.24) and (4.29), we obtain

(4.30)
∫

K
e2u(T )dµ0 ≤ 8C1eC1‖u0‖2

.

Applying Lemma 2, from (4.30), we get∫
M

e2u(T )dµ0 ≤ γ ,

which contradicts (4.27). Now suppose that we are in the case
∫

M f +e2u(T )dµ0 >
1
2

∫
M f −e2u(T )dµ0. Then

(−infx∈M f (x))

2

∫
K

e2u(T )dµ0 ≤
∫

M
f −e2u(T )dµ0 ≤ 2

∫
M

f +e2u(T )dµ0 ≤ 4γ sup
x∈M

f (x),

thus

(4.31)
∫

K
e2u(T )dµ0 ≤ 8γ supx∈M f (x)

(− infx∈M f (x))
.

Combining (4.31) and (4.25), we get∫
K

e2u(T )dµ0 ≤ 8C1eC1‖u0‖2
,

which gives, by applying Lemma 2,∫
M

e2u(T )dµ0 ≤ γ ,

contradicting (4.27) once more. Thus T = ∞, and we have established (4.26).
Estimate (4.26) allows us to bound uniformly u in H . Using Jensen’s in-

equality, (4.26) implies that

(4.32)
∫

M
u(t)dµ0 ≤ C ,
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where C > 0 depends on M , Vol(K ) and u0. Combining (4.7) and (4.32), we
find that

(4.33)
∫

M
|∇u(t)|2dµ0 ≤ C ,

with C > 0 depending on M , Vol(K ) and u0. From the energy inequality (4.7)
and (4.32), we have

(4.34)
∣∣∣∣
∫

M
u(t)dµ0

∣∣∣∣ ≤ C ,

with C > 0 depending on M , Vol(K ) and u0. We deduce from (4.33), (4.34)
and the Poincaré inequality (4.4) that

(4.35)
∫

M
u2(t)dµ0 ≤ C ,

with C > 0 depending on M , Vol(K ) and u0. Thus, by (4.33) and (4.35),
we conclude that for all t ≥ 0 : ‖u(t)‖ ≤ Cste. This completes the proof of
Part (ii) of Theorem 2.

The positive case. For any P ∈ S2 and r ≥ 1, we set vP,r = u ◦ φP,r +
1
2 log(det dφP,r ). Recall that φP,r is the conformal transformation on S2 given
by φP,r (z) = r z, where z is the coordinate obtained by stereographic projection
from P . We first notice that

(4.36) J (vP,r ) = J (u) ≤ J (u0) ,

and

(4.37)
∫

S2
f ◦ φP,r e2vP,r dµ0 =

∫
S2

f e2udµ0 = 8π .

From (4.37), it follows that

(4.38)
∫

S2
e2vP,r dµ0 ≥ C ,

where C is a positive constant depending on supx∈S2 f (x). For all t ≥ 0, there
exist P(t) ∈ S2 and r(t) ≥ 1 (see [6]) such that

(4.39)
∫

S2
xi e

2vP(t),r(t)dµ0 = 0 for i = 1, 2, 3 .

From now on, we set v(t) = vP(t),r(t) and φ(t) = φP(t),r(t). By a result of
Aubin [2], in view of (4.38) and (4.39), for any ε > 0, there exists a constant
Cε such that

(4.40) C ≤ 1

4π

∫
S2

e2v(t)dµ0 ≤Cε exp
(

(1/2 + ε)

4π

∫
S2

|∇v(t)|2dµ0+ 2

4π

∫
S2

v(t)dµ0

)
.
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Combining (4.40) and (4.36), we deduce

(4.41)
∫

S2
|∇v(t)|2dµ0 ≤ C ,

and

(4.42)
∣∣∣∣
∫

S2
v(t)dµ0

∣∣∣∣ ≤ C ,

where C is a positive constant depending on u0 and supx∈S2 f (x). Thus, by
the Moser-Trudinger inequality [18], estimates (4.41) and (4.42) show that

(4.43)
∫

S2
e|4v(t)|dµ0 ≤ Cste .

From (4.43), it follows that ∫
S2

v2(t)dµ0 ≤ Cste ,

which implies with (4.41) that

(4.44) ‖v(t)‖ ≤ Cste .

Now, in order to prove that u is uniformly bounded in H , we need the following
concentration lemma.

Lemma 3. Either

(i) there exists a constant C such that ‖u(t)‖ ≤ C or
(ii) there exist a sequence tn → ∞ and P∞ ∈ S2 such that for all r > 0

(4.45) lim
n→∞

∫
B(P∞,r)

f e2u(tn)dµ0 = 8π .

Proof of Lemma 3. We follow the ideas of Chang-Yang [6]. There are
two possibilities: either r(t) is bounded; in which case we have, for all t ≥ 0

0 < C1 ≤ det dφ(t) ≤ C2 .

Thus using (4.44), we deduce that

(4.46)
∫

S2
|u(t)|dµ0 ≤ Cste .

By the energy inequality (1.14), estimate (4.46) implies

(4.47)
∫

S2
|∇u(t)|2dµ0 ≤ Cste .
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So, using Poincaré’s inequality (4.4), estimates (4.46) and (4.47) yield

‖u(t)‖ ≤ Cste .

Otherwise, there exist a sequence tn → +∞ and P∞ ∈ S2 such that r(tn) →
+∞ and P(tn) → P∞. From (4.44), there exist a subsequence of tn , that we
will also call tn , and a function v∞ ∈ H , such that

{
v(tn) → v∞ weakly in H

v(tn) → v∞ strongly in L2(S2) .

Let r > 0 and set An = (φ(tn))−1(B(P∞, r)); we have

∣∣∣∣
∫

S2
f ◦ φ(tn)e

2v(tn)dµ0 −
∫

An

f ◦ φ(tn)e
2v(tn)dµ0

∣∣∣∣
≤ sup

x∈S2
f (x)

(
Vol(Ac

n)

∫
S2

e|4v(tn)|dµ0

)1/2

.

Since limn→∞ Vol(An) = Vol(S2) and in view of (4.43), we deduce that

(4.48)
∫

B(P∞,r)

f e2u(tn)dµ0 =
∫

An

f ◦ φ(tn)e
2v(tn)dµ0 =

∫
S2

f ◦ φ(tn)e
2v(tn)dµ0 + εn ,

with limn→∞ εn = 0. From equation (4.37), we have

∫
S2

f ◦ φ(tn)e
2v(tn)dµ0 = 8π ,

thus it follows from (4.48) that

lim
n→∞

∫
B(P∞,r)

f e2u(tn)dµ0 = 8π .

This completes the proof of Lemma 3.

We are now in position to prove Theorem 3. Since u0 is G-invariant, by
using the uniqueness of the solution u, it is not difficult to see that u is also
G-invariant. From the energy inequality (1.14), we may suppose that

(4.49) J (u(t)) < J (u(t ′)) for all t > t ′ ,

otherwise, from the uniqueness of the solution u we would have u(t) ≡ u0 for
all t ≥ 0.

(i) The case � = ∅. Suppose that r(t) is not bounded. Since � = ∅, there
exists R ∈ G satisfying R(P∞) �= P∞. Now, as limn→∞ φ(tn)(x) = P∞
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a.e., it follows that for r sufficiently small, φ(tn)(x) �∈ B(R(P∞), r) when n
is large enough. Thus

(4.50) lim
n→∞ 1(φ(tn))−1(B(R(P∞),r))(x) = 0 ,

where 1A denotes the characteristic function of a set A. Moreover, we
can also choose r such that B(R(P∞), r) ∩ B(P∞, r) = ∅. Using (4.43)
and (4.50), we have

(4.51) lim
n→∞

∫
(φ(tn))−1(B(R(P∞),r))

f ◦ φ(tn)e
2v(tn)dµ0 = 0 .

Since u and f are G-invariant and by (4.51), we obtain

lim
n→∞

∫
B(P∞,r)

f e2u(tn)dµ0 = lim
n→∞

∫
(φ(tn))−1(B(R(P∞),r))

f ◦ φ(tn)e
2v(tn)dµ0 = 0 .

This contradicts estimate (4.45) in Lemma 3, thus u is uniformly bounded
in H .

(ii) The case � �= ∅. Suppose that r(t) is not bounded. If P∞ �∈ �, then as in
case (i) above, we arrive at a contradiction. Otherwise by letting n → ∞
in (4.37) (with vP,r = v(tn) and φP,r = φ(tn)), we have

(4.52) f (P∞)

∫
S2

e2v∞dµ0 = 8π ,

and a computation shows that

(4.53) lim
n→∞

∫
S2

e2u(tn)dµ0 = lim
n→∞

∫
S2

e2v(tn)dµ0 =
∫

S2
e2v∞dµ0 .

By Onofri’s inequality (see [20]) and (1.14), we obtain for large n

(4.54)
1

4π

∫
S2

e2u(tn)dµ0 ≤ eJ (u(tn))/4π ≤ eJ (u(1))/4π .

Combining (4.52), (4.53) and (4.54), we deduce that
2 ≤ f (P∞)eJ (u(1))/4π .

Since we have from (4.49), J (u(1)) < J (u0), it follows that
f (P∞) > 2e−J (u0)/4π

thus contradicting hypothesis (1.16) of Theorem 3. This completes the
proof of Part (ii) of Theorem 3.

Proof of Corollary 2. Let f satisfy estimate (1.17). If
∫

S2 f ◦φP0,r0dµ0 ≤
0, then supP∈� f (P) ≤ 0, so condition (1.16) in Theorem 3 is satisfied for any
G-invariant data u0 ∈ X . On the other hand, if

∫
S2 f ◦ φP0,r0dµ0 > 0, we
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let u∗ = 1
2 log(det dφ−1

P0,r0
). A computation shows that J (u∗) = 0. Now set

u0 = u∗ + C , where C is a constant satisfying

(4.55) e2C
∫

S2
f ◦ φP0,r0dµ0 = 8π .

From (4.55), we see that u0 ∈ X . Since P0 ∈ �, it is easy to check that u0 is
G-invariant. We see therefore that condition (1.16) of Theorem 3 is equivalent to

sup
P∈�

f (P) ≤ 1

4π

∫
S2

f ◦ φP0,r0dµ0 ;

this completes the proof of Corollary 2.
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Université de Brest
6, Avenue Le Gorgeu
29285 Brest, France
Ali.Fardoun@univ-brest.fr
Paul.Baird@univ-brest.fr
Rachid.Regbaoui@univ-brest.fr


