We consider a one-dimensional semilinear parabolic equation with a gradient nonlinearity. We provide a complete classification of large time behavior of the classical solutions
@article{ASNSP_2004_5_3_1_1_0, author = {Arrieta, Jos\'e M. and Rodriguez-Bernal, Anibal and Souplet, Philippe}, title = {Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {1--15}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 3}, number = {1}, year = {2004}, mrnumber = {2064964}, zbl = {1072.35098}, language = {en}, url = {https://www.numdam.org/item/ASNSP_2004_5_3_1_1_0/} }
TY - JOUR AU - Arrieta, José M. AU - Rodriguez-Bernal, Anibal AU - Souplet, Philippe TI - Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2004 SP - 1 EP - 15 VL - 3 IS - 1 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2004_5_3_1_1_0/ LA - en ID - ASNSP_2004_5_3_1_1_0 ER -
%0 Journal Article %A Arrieta, José M. %A Rodriguez-Bernal, Anibal %A Souplet, Philippe %T Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2004 %P 1-15 %V 3 %N 1 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2004_5_3_1_1_0/ %G en %F ASNSP_2004_5_3_1_1_0
Arrieta, José M.; Rodriguez-Bernal, Anibal; Souplet, Philippe. Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 1, pp. 1-15. https://www.numdam.org/item/ASNSP_2004_5_3_1_1_0/
[1] Solutions faibles d'équations paraboliques quasi-linéaires avec données initiales mesures, Ann. Math. Blaise-Pascal 3 (1996) 1-15. | Numdam | MR | Zbl
,[2] Blow up for a diffusion-advection equation, Proc. Roy. Soc. Edinburgh A 113 (1989), 181-190. | MR | Zbl
- - ,[3] Interior gradient blow-up in a semilinear parabolic equation, Differential Integral Equations 9 (1996), 865-877. | MR | Zbl
- ,[4] On the generalized Dirichlet for viscous Hamilton-Jacobi equations, J. Math. Pures et Appl., to appear. | Zbl
- ,[5] The mixed Cauchy-Dirichlet for a viscous Hamilton-Jacobi equation, Adv. Differential Equations, to appear. | MR | Zbl
- ,[6] The local theory for viscous Hamilton-Jacobi equations in Lebesgue spaces, J. Math. Pures et Appl. 81 (2002) 343-378. | MR | Zbl
- - ,[7] Solutions globales d'equations de la chaleur semilinéaires, Commun. Partial Differential Equations 9 (1984), 955-978. | MR | Zbl
- ,[8] Infinite time blow-up of solutions to a nonlinear parabolic problem, J. Differential Equations 139 (1997), 409-427. | MR | Zbl
,[9] Asymptotics of blowup for a convection-diffusion equation with conservation, Differential Integral Equations 9 (1996), 719-728. | MR | Zbl
- ,[10] “Problèmes aux limites pour les équations de Hamilton-Jacobi avec viscosité et données initiales peu regulières”, PhD thesis, Université Nancy 1, 2003.
,[11] Stabilization of solutions of a nonlinear parabolic equation with a gradient term, Math. Z., 216 (1994), 147-155. | MR | Zbl
,[12] Is quenching in infinite time possible ?, Quart. Appl. Math. 8 (1990), 531-534. | MR | Zbl
- ,[13] Derivative blow-up and beyond for quasilinear parabolic equations, Differential Integral Equations 7 (1994), 811-821. | MR | Zbl
- ,[14] The transition from decay to blow-up in some reaction-diffusion-convection equations, World Congress of Nonlinear Analysts '92, Vol. I-IV (Tampa, FL, 1992), 455-463, de Gruyter, Berlin, 1996. | MR | Zbl
- ,
[15] Linear and nonlinear heat equations in
[16] Continuation of blow-up solutions of nonlinear heat equations in several space dimensions, Comm. Pure Appl. Math. 50 (1997), 1-67. | Zbl
- ,[17] A bound for global solutions of semi-linear heat equations, Comm. Math. Phys. 103 (1986), 415-421. | MR | Zbl
,[18] Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56 (1986), 889-892. | Zbl
- - ,[19] “Linear and Quasilinear Equations of Parabolic Type”, Amer. Math. Soc. Translations, Providence, RI, 1967. | MR | Zbl
- - ,[20] The first initial-boundary value problem for quasilinear second order parabolic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 13 (1986), 347-387. | Numdam | MR | Zbl
,[21] “Generalized solutions of Hamilton-Jacobi Equations”, Pitman Research Notes in Math. 62, 1982. | MR
,[22] On the asymptotic behavior of solutions of certain quasi-linear equations of parabolic type, J. Differential Equations 54 (1984), 97-120. | MR | Zbl
- - ,[23] A priori bounds for global solutions of a semilinear parabolic problem, Acta Math. Univ. Comenianae 68 (1999), 195-203. | MR | Zbl
,[24] Universal bound for global positive solutions of a superlinear parabolic problem, Math. Ann. 320 (2001), 299-305. | MR | Zbl
,[25] Continuity of the blow-up time and a priori bounds for solutions in superlinear parabolic problems, Houston J. Math. 29 (2003), 757-799. | MR | Zbl
,[26] Initial blow-up rates and universal bounds for nonlinear heat equations, J. Differential Equations, to appear. | MR | Zbl
- - ,[27] Recent results and open problems on parabolic equations with gradient nonlinearities, Electronic J. Differential Equations 20 (2001), 1-19. | MR | Zbl
,[28] Gradient blow-up for multidimensional nonlinear parabolic equations with general boundary conditions, Differential Integral Equations 15 (2002), 237-256. | MR | Zbl
,[29] Poincaré's inequality and global solutions of a nonlinear parabolic equation, Ann. Inst. H. Poincaré, Anal. Non linéaire 16 (1999), 337-373. | Numdam | MR | Zbl
- ,[30] Stabilisation of solutions of boundary value problems for a second-order equation with one space variable, Differential Equations 4 (1968), 17-22. | Zbl
,