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The Extended Future Tube Conjecture for SO(1, n)

PETER HEINZNER – PATRICK SCHÜTZDELLER

Abstract. Let C be the open upper light cone in R
1+n with respect to the Lorentz

product. The connected linear Lorentz group SOR(1, n)0 acts on C and therefore
diagonally on the N -fold product T N where T = R

1+n + iC ⊂ C
1+n . We prove

that the extended future tube SOC(1, n) · T N is a domain of holomorphy.
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(secondary).

For K ∈ {R, C} let K
1+n denote the (1 + n)-dimensional Minkowski space,

i.e., on K
1+n we have given the bilinear form

(x, y) �→ x • y := x0 y0 − x1 y1 − · · · − xn yn

where xj respectively yj are the components of x respectively y in K
1+n. The

group OK(1, n) = {g ∈ GlK(1 + n); gx • gy = x • y for all x, y ∈ K
1+n} is

called the linear Lorentz group. For n ≥ 2 the group OR(1, n) has four con-
nected components and OC(1, n) has two connected components. The connected
component of the identity OK(1, n)0 of OK(1, n) will be called the connected
linear Lorentz group. Note that SOR(1, n) = {g ∈ OR(1, n); det(g) = 1} has
two connected components and OR(1, n)0 = SOR(1, n)0. In the complex case
we have SOC(1, n) = OC(1, n)0.

The forward cone C is by definition the set C := {y ∈ R
1+n; y • y > 0

and y0 > 0} and the future tube T is the tube domain over C in C
1+n , i.e.,

T = R
1+n + iC ⊂ C

1+n . Note that T N = T × · · · × T is the tube domain in
the space of complex (1 + n)× N -matrices C

(1+n)×N over C N = C ×· · ·× C ⊂
R

(1+n)×N . The group SOC(1, n) acts by matrix multiplication on C
(1+n)×N and

the subgroup SOR(1, n)0 stabilizes T N . In this note we prove the
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Extended future tube conjecture:

SOC(1, n) · T N =
⋃

g ∈ SOC(1,n)

g · T N is a domain of holomorphy.

This conjecture arise in the theory of quantized fields for about 50 years. We
refer the interested reader to the literature ([HW], [J], [SV], [StW], [W]). There
is a proof of this conjecture in the case where n = 3 ([He2]), [Z]). The proof
there uses essentially that T can be realized as the set {Z ∈ C

2×2; 1
2i (Z − t Z̄) is

positive definite}. Moreover the proof for n = 3 is unsatisfactory. It does not
give much information about SOC(1, n) · T N except for holomorphic convexity.

Here we prove that more is true. Roughly speaking, we show that the basic
Geometric Invariant Theory results known for compact groups (see [He1]) also
holds for X := T N and the non compact group SOR(1, n)0. More precisely this
means SOC(1, n) · X = Z is a universal complexification of the G-space X , G =
SOR(1, n)0, in the sense of [He1]. There exists complex analytic quotients X//G
and Z//GC, GC = SOC(1, n), given by the algebra of invariant holomorphic
functions and there is a G-invariant strictly plurisubharmonic function ρ : X →
R, which is an exhaustion on X/G. Let

µ : X → g
∗, µ(z)(ξ) = d

dt

∣∣∣
t=0

(t → ρ(exp i tξ · z)),

be the corresponding moment map. Then the diagram

µ−1(0) ↪→ X ↪→ Z

↓ ↓ π ↓ πC

µ−1(0)/G ≡ X//G ≡ Z//GC

where all maps are induced by inclusion is commutative, X//G, X, Z and
Z//GC are Stein spaces and ρ|µ−1(0) induces a strictly plurisubharmonic ex-
haustion on µ−1(0)/G = X//G = Z//GC. Moreover the same statement holds
if we replace X = T N with a closed G-stable analytic subset A of X .

1. – Geometric Invariant Theory of Stein spaces

Let Z be a Stein space and G a real Lie group acting as a group of
holomorphic transformations on Z . A complex space Z//G is said to be an
analytic Hilbert quotient of Z by the given G-action if there is a G-invariant
surjective holomorphic map π : Z → Z//G, such that for every open Stein
subspace Q ⊂ Z//G
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i. its inverse image π−1(Q) is an open Stein subspace of Z and
ii. π∗OZ//G(Q) = O(π−1(Q))G , where O(π−1(Q))G denotes the algebra of

G-invariant holomorphic functions on π−1(Q) and π∗ is the pull back map.

Now let Gc be a linearly reductive complex Lie group. A complex space Z
endowed with a holomorphic action of Gc is called a holomorphic Gc-space.

Theorem 1.1. Let Z be a holomorphic Gc-space, where Gc is a linearly
reductive complex Lie group.

i. If Z is a Stein space, then the analytic Hilbert quotient Z//Gc exists and is a
Stein space.

ii. If Z//Gc exists and is a Stein space, then Z is a Stein space.

Proof. Part i. is proven in [He1] and part ii. in [HeMP].

Remark 1.1.
i. If the analytic Hilbert quotient π : Z → Z//Gc exists, then every fiber

π−1(q) of π contains a unique Gc-orbit Eq of minimal dimension. More-
over, Eq is closed and π−1(q) = {z ∈ Z; Eq ⊂ Gc.z}. Here denotes
the topological closure.

ii. Let X be a subset of Z , such that Gc ·X := ⋃
g∈Gc g·X = Z and assume that

Z//Gc exists. Then Gc · X is a Stein space if and only if Z//Gc = π(X)

is a Stein space.
iii. Let V c be a finite dimensional complex vector space with a holomorphic

linear action of Gc. Then the algebra C[V c]Gc
of invariant polynomials is

finitely generated (see e.g. [Kr]).

In particular, the inclusion C[V c]Gc
↪→ C[V c] defines an affine variety

V c//Gc and an affine morphism π c : V c → V c//Gc. If we regard V c//Gc as
a complex space, then π c : V c → V c//Gc gives the analytic Hilbert quotient
of V c (see e.g. [He1]).

Remark 1.2. For a non-connected linearly reductive complex group G let
G0 denote the connected component of the identity and let Z be a holomorphic
G-space. The analytic Hilbert quotient Z//G exists if and only if the quotient
Z//G0 exists. Moreover, the quotient map πG : Z → Z//G induces a map
πG/G0 : Z//G0 → Z//G which is finite. In fact the diagram

Z
πG0 ↙ ↘ πG

Z//G0 −→ Z//G
πG/G0

commutes and πG/G0 is the quotient map for the induced action of the finite
group G/G0 on Z//G0.
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2. – The geometry of the Minkowski space

Let K denote either the field R or C and (e0, . . . , en) the standard or-
thonormal basis for K

1+n . The space K
1+n together with the quadratic form

η(z) = z2
0 − z2

1 − · · · − z2
n , where zj are the components of z, is called the

(1 + n)-dimensional linear Minkowski space. Let <, >L denote the symmetric
non-degenerated bilinear form which corresponds to η, i.e., z•w :=< z, w >L=
tz Jw where tz denotes the transpose of z and J = (e0, −e1, . . . ., −en) or equiv-
alently z•w =< z, Jw >E where <, >E denotes the standard Euclidean product
on R

1+n , respectively its C-linear extension to C
1+n .

Let OK(1, n) denote the subgroup of GlK(1 + n) which leave η fixed, i.e.,
OK(1, n) = {g ∈ GlK(1 + n); gz • gw = z • w for all z, w ∈ K

1+n}. Note that
SOK(1, n) = {g ∈ OK(1, n); det g = 1} is an open subgroup of OK(1, n). For
K = C, SOC(1, n) is connected. But in the real case SOR(1, n) consists of
two connected components (n ≥ 2). The connected component SOR(1, n)0 =
OR(1, n)0 of the identity is called the connected linear Lorentz group. Note
that SOR(1, n)0 is not an algebraic subgroup of SOR(1, n) but is Zariski dense
in SOR(1, n). We have K[η] = K[K1+n]SOK(1,n) = K[K1+n]OK(1,n).

Now let C
(1+n)×N = C

1+n × · · · × C
1+n be the N -fold product of C

1+n , i.e.,
the space of complex (1 + n) × N - matrices. The group OC(1, n) acts on
C

(1+n)×N by left multiplication. A classical result in Invariant Theory says that
C[C(1+n)×N ]OC(1,n) is generated by the polynomials pkj (z1, . . . , zN ) = zk • zj

where z = (z1, . . . , zN ) ∈ C
(1+n)×N .

Remark 2.1. The (algebraic) Hilbert quotient C
(1+n)×N //OC(1, n) can be

identified with the space SymN (min{1 + n, N }) of symmetric N × N -matrices
of rank smaller or equal min{1 + n, N }.

With this identification the quotient map πC : C
(1+n)×N→C

(1+n)×N //OC(1,n)

is given by πC(Z) = tZ J Z where tZ denotes the transpose of Z and J is as
above. For the group SOC(1, n) the situation is slightly more complicated. If
N ≥ 1 + n additional invariants appear, but they are not relevant for our con-
siderations, since the induced map C

(1+n)×N //SOC(1, n) → C
(1+n)×N //OC(1, n)

is finite.

There is a well known characterization of closed OC(1, n)-orbits in C
(1+n)×N .

In order to formulate this we need more notations. Let z = (z1, . . . , zN ) ∈
C

(1+n)×N and L(z) := Cz1 + · · · + CzN be the subspace of C
1+n spanned by

z1, . . . , zN . The Lorentz product <, >L restricted to L(z) is in general degen-
erated. Thus let L(z)0 = {w ∈ L(z); < w, v >L= 0 for all v ∈ L(z)}. It follows
that dimL(z)/L(z)0 = rank(tz J z) = rank πC(z). Elementary consideration show
the following.

Lemma 2.1. The orbit OC(1, n) · z through z ∈ C
(1+n)×N is closed if and only

if the orbit SOC(1, n) · z is closed and this is the case if and only if L(z)0 = {0}, i.e.,
dimL(z) = rank πC(z).
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The light cone N := {y ∈ R
1+n; η(y) = 0} is of codimension one and its

complement R
1+n\N consists of three connected components (here of course

we assume n ≥ 2). By the forward cone C we mean the connected component
which contains e0. It is easy to see that C = {y ∈ R

1+n; y•e0 > 0 and η(y) > 0}
= {y ∈ R

1+n; y • x > 0 for all x ∈ N+} where N+ = {x ∈ N ; x • e0 > 0}. In
particular, C is an open convex cone in R

1+n . Since J has only one positive
Eigenvalue, the following version of the Cauchy-Schwarz inequality holds.

Lemma 2.2. If η(y) > 0, then x̃ • y ≤ 0 for x̃ := x − x•y
η(y)2

y and all x ∈ R
1+n.

In particular
η(x) · η(y) ≤ (x • y)2

and equality holds if and only if x and y are linearly dependent.

The elementary Lemma has several consequences which are used later on.
For example,

• if y1, y2 ∈ C± := C ∪ (−C) = {y ∈ R
1+n; η(y) > 0}, then y1 • y2 = 0.

Moreover,
• if y1, y2 ∈ N = {y ∈ R

1+n; η(y) = 0}, and y1 • y2 = 0, then y1 and y2 are
linearly dependent.

The tube domain T = R
1+n + iC ⊂ C

1+n over C is called the future tube.
Note that SOR(1, n)0 acts on T by g · (x + iy) = gx + igy and therefore on
the N -fold product T N = T × · · · × T ⊂ C

(1+n)×N by matrix multiplication.

Remark 2.2. It is easy to show that the SOR(1, n)0-action on C and
consequently also on T N is proper. In particular T N /SOR(1, n)0 is a Hausdorff
space.

The complexified group SOC(1, n) does not stabilize T N . The domain

SOC(1, n) · T N =
⋃

g∈SOC(1,n)

g · T N

is called the extended future tube.

3. – Orbit connectedness of the future tube

Let G be a Lie group acting on Z . A subset X ⊂ Z is called orbit
connected with respect to the G-action on Z if �(z) = {g ∈ G; g · z ∈ X} is
connected for all z ∈ X .

In this section we prove the following

Theorem 3.1. The N-fold product T N of the future tube is orbit connected with
respect to the SOC(1, n)-action on C

(1+n)×N .
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We first reduce the proof of this Theorem for the SOC(1, n)-action to the
proof of the related statement about the Cartan subgroups of SOC(1, n). For
this we use the results of Bremigan in [B]. For the convenience of the reader
we briefly recall those parts, which are relevant for the proof of Theorem 3.1.

Starting with a simply connected complex semisimple Lie group GC with
a given real form G defined by an anti-holomorphic group involution, g �→ ḡ,
there is a subset S of GC such that GSG contains an open G × G-invariant
dense subset of GC. The set S is given as follows.

Let Car(GC) = {H1, . . . , H�} be a complete set of representatives of the Cartan
subgroups of GC, which are defined over R. Associated to each H ∈ Car(GC)
are the Weyl group W(H) := NGC(H)/H , the real Weyl group WR(H) :=
{gH ∈ W(H); ḡH = gH} and the totally real Weyl group WR!(H) := {gH ∈
WR(H); ḡ = g}. Here NGC(H) denotes the normalizer of H in GC.

For H ∈ Car(GC) let R(H) be a complete set of representatives of the double
coset space WR!(H)\WR(H)/WR!(H) chosen in such a way that ε̄ = ε−1 holds
for all ε ∈ R(H). Then S := ∪Hε has the claimed properties.

Although SOC(1, n) is not simply connected, the results above remain true for
G := SOR(1, n)0 and GC := SOC(1, n), as one can see by going over to the
universal covering.

Remark 3.1. Using the classification of the SOR(1, n)0 ×SOR(1, n)0-orbits
in SOC(1, n) as presented in [J], the same result can be obtained for GC =
SOC(1, n).

Since T N is SOR(1, n)0-stable, SOR(1, n)0 is connected and SOR(1, n)0 · S ·
SOR(1, n)0 is dense in SOC(1, n), Theorem 3.1 follows from

Proposition 3.1. The set �S(w) := {g ∈ S; g · w ∈ T N } is connected for all
w ∈ T N .

In the case n = 2m − 1 we may choose Car(SOC(1, n)) = {H0} where

H0 =







σ 0 · · · 0

0 τ1
. . .

...
...

. . .
. . . 0

0 · · · 0 τm−1


; σ ∈SOC(1, 1), τj ∈SOC(2)




and R(H0) ={Id}.

In the even case n = 2m we make the choice Car(SOC(1, n)) = {H1, H2} where

H1 =
{( h 0

0 1

)
; h ∈ H0

}
, H2 =







1 0 · · · 0

0 τ1
. . .

...
...

. . .
. . . 0

0 · · · 0 τm


 ; τj ∈ SOC(2)




,

R(H1) = {Id} and R(H2) = {Id, ε} with ε =




−1 0
0 1
1 0

0 Id2m−3


 .
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Observe that in the case H2, where ε is present, S is not connected. But
the “ε-part” of S is not relevant, since any h ∈ H2 does not change the sign
of the first component of the imaginary part of zj ∈ T and therefore �H2ε(z)
is empty for all z ∈ T N . Thus it is sufficient to prove the following

Proposition 3.2. For every possible H ∈ {H0, H1, H2} and every w ∈ T N the
set �H (w) = {h ∈ H ; h · w ∈ T N } is connected.

Proof. We will carry out the proof in the case where n = 2m − 1 and
H = H0. The proof in the other cases is analogous. Note that H splits into
its real and imaginary part, i.e., H = HR · HI

∼= HR × HI where HR denotes
the connected component of the identity of SOR(1, n)0 ∩ H = {h ∈ H ; h̄ = h}
and HI = exp ihR. Thus the 2 × 2 blocks appearing for h ∈ HI are given by

σ =
( a ib

ib a

)
where a2 + b2 = 1 and

τj =
( cj −idj

idj cj

)
where c2

j − d2
j = 1, cj > 0.

Let S1 := {(x, y) ∈ R
2; x2 + y2 = 1}, H := {(x, y) ∈ R

2; x2 − y2 = 1 and x >

0}, identify HI with S1 × H × · · · × H ⊂ R
2 × · · · × R

2 = R
2m and let

ψ̃ : R
2m → R

(1+n)×(1+n), ψ̃(a, b, c1, d1, ..., cm−1, dm−1)=




σ 0 · · · 0

0 τ1
. . .

...
...

. . .
. . . 0

0 · · · 0 τm−1




where σ =
( a ib

ib a

)
and τj =

( cj −idj

idj cj

)
. The restriction ψ of ψ̃ to

S1 × H × · · · × H is a diffeomorphism onto its image HI .
For every wk ∈ T , k = 1, . . . , N we get the linear map ϕ̃k : R

2m → R
1+n ,

p �→ Im(ψ̃(p) · wk). Note that

• If p = (p1, . . . , pm) ∈ ϕ̃−1
k (C), then (p1, . . . , r pj , . . . , pm) ∈ ϕ̃−1

k (C) for
all 0 < r ≤ 1 and j = 2, . . . , m.

• If p = (p1, . . . , pm), pj ∈ ϕ̃−1
k (C), then (s · p1, p2, . . . , pm) ∈ ϕ̃−1

k (C) for
all s > 1.

where p1 = (a, b), pj = (cj , dj ) ∈ R
2, j = 2, . . . , m.

It remains to show that �HI (w) is connected for all w ∈ T N .
Let e := ((1, 0), (1, 0), . . . ., (1, 0)) = ψ−1(Id) ∈ ψ−1(�HI (w)) and p =

(p1, . . . , pm) := ψ−1(h) ∈ ψ−1(�HI (w)). From the convexity of C and the
linearity of ϕ̃k it follows that q(t) = (q1(t), . . . , qm(t)) = e + t (p − e) is
contained in

⋂N
k=1 ϕ−1

k (C) for t ∈ [0, 1]. Thus

γ̃p(t) :=
(

q1(t)

‖q1(t)‖E
,

q2(t)√
η(q2(t))

, . . . .,
qm(t)√
η(qm(t))

)
∈ ψ−1(�H (w))

for t ∈ [0, 1]. Here ‖ · ‖E denotes the standard Euclidean norm. Thus γh(t) :=
ψ(γ̃p(t)) gives a curve which connects Id with h.
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Since SOR(1, n)0 is a real form of SOC(1, n), orbit connectness implies
the following (see [He1])

Corollary 3.1. Let Y be a complex space with a holomorphic SOC(1, n)-
action. Then every holomorphic SOR(1, n)0-equivariant map ϕ : T N → Y extends
to a holomorphic SOC(1, n)-equivariant map � : SOC(1, n) · T N → Y .

In the terminology of [He1] Corollary 3.1 means that SOC(1, n) · T N is the
universal complexification of the SOR(1, n)0-space T N .

4. – The strictly plurisubharmonic exhaustion of the tube

Let X, Q, P be topological spaces, q : X → Q and p : X → P continuous
maps. A function f : X → R is said to be an exhaustion of X mod p along q if
for every compact subset K of Q and r ∈ R the set p(q−1(K )∩ f −1((−∞, r ]))
is compact.

The characteristic function of the forward cone C is up to a constant given

by the function ρ̃ : C → R, ρ̃(y) = η(y)−
n+1

2 . It follows from the construction
of the characteristic function, that log ρ̃ is a SOR(1, n)0-invariant strictly convex
function on C (see [FK] for details). In particular

ρ : T N → R, (x1 + iy1, . . . , xN + iyN ) �→ 1

η(y1)
+ · · · + 1

η(yN )

is a SOR(1, n)0-invariant strictly plurisubharmonic function on T N . Of course
this may also be checked by direct computation.

Let πC : C
(1+n)×N → C

(1+n)×N //SOC(1, n) be the analytic Hilbert quotient
and πR : T N → T N /SOR(1, n)0 the quotient by the SOR(1, n)0-action. In the
following we always write z = x + iy, i.e., zj = xj + iyj where xj denote the
real and yj the imaginary part of zj . For example zj • zk = xj • xk − yj • yk +
i(xj • yk + xk • yj ).

The main result of this section is the following

Theorem 4.1. The function ρ : T N → R, is an exhaustion of T N mod πR

along πC.

We do the case of one copy first.

Lemma 4.1. Let D1 ⊂ T and assume that πC(D1) ⊂ C is bounded. Then
{(x • y, η(x), η(y)) ∈ R

3; z = x + iy ∈ D1} is bounded.

Proof. The condition on D1 means, that there is a M ≥ 0 such that

|η(x) − η(y)| ≤ M and |x • y| ≤ M

for all z = x + iy ∈ D1. Since η(x)η(y) ≤ (x • y)2 and η(y) ≥ 0, this implies
that {(x • y, η(x), η(y)) ∈ R

3; z ∈ D1} is bounded.
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Lemma 4.2. Let D2 ⊂ T × T be such that πC(D2) is bounded. Then
{(η(x1), η(y1), η(x2), η(y2), x1 • x2, y1 • y2) ∈ R

6; (z1, z2) ∈ D2} is bounded.

Proof. Lemma 4.1 implies that there is a M1 ≥ 0 such that |η(xj )| ≤
M1, |η(yj )| ≤ M1 and |xj • yj | ≤ M1, j = 1, 2, for all (z1, z2) ∈ D2. Now
η(z1 + z2) = η(z1)+η(z2)+ 2 · z1 • z2 shows that {η(z1 + z2) ∈ R; (z1, z2) ∈ D2}
is bounded. But z1 + z2 ∈ T , thus Lemma 4.1 implies |η(x1 + x2)| ≤ M2 and
|η(y1 + y2)| ≤ M2 for some M2 ≥ 0 and all (z1, z2) ∈ D2. This gives

|x1 • x2| ≤ 3

2
max {M1, M2} and |y1 • y2| ≤ 3

2
max {M1, M2}.

Remark 4.1. Based on the following we only need, that the set
{(η(y1), η(y2), y1 • y2) ∈ R

3; (z1, z2) ∈ D2} is bounded. We apply this to
points yj + iy1 where πC(yj + iy1) = η(yj ) − η(y1) + 2iyj • y1.

Remark 4.2. For every subset X of T, we have

X ⊂ SOR(1, n)0 · (X ∩ (R1+n + i(R>0 · e0))),

where R
>0 · e0 = {te0; t > 0} ⊂ R

1+n .

Lemma 4.3. For every compact sets B ⊂ C and K ⊂ C the set

M(B, K ) := {x ∈ R
1+n; πC(x + iy) ∈ K for some y ∈ B}

is compact.

Proof. Since B and K are compact, M(B, K ) is closed. We have to show
that it is bounded. First note that B1 ⊂ B2 implies M(B1, K ) ⊂ M(B2, K ).
Using the properness of the SOR(1, n)0-action on C , we see, that there is an
interval I = {t · e0; a ≤ t ≤ b}, a > 0 in R · e0 and a compact subset N in
SOR(1, n)0, such that N · I := ⋃

g∈N g · I ⊃ B. Thus M(B, K ) ⊂ M(N · I, K ) =
N · M(I, K ) := ⋃

g∈N g · M(I, K ).

It remains to show that M(I, K ) is bounded. For x ∈ M(I, K ), x =



x0
...

xn


,

there exists a M1 ≥ 0 such that |x • (y0 · e0)| = |x0 · y0| ≤ M1 for all y0 · e0 ∈ I .

Since a ≤ y0 ≤ b and a > 0, this implies |x2
0 | ≤ M1

2

|y2
0 | ≤ M1

2

a2 . There also

exists a M2 ≥ 0 such that |η(x)| = |x2
0 − x2

1 − · · · x2
n | ≤ M2, so we get

x2
1 + · · · x2

n ≤ M2
1

a2 + M2.

Corollary 4.1. For every r > 0 the set M(B, K ) ∩ {y ∈ R
1+n; r ≤ η(y)} is

compact.
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Proof of Theorem 4.1. Using Remark 4.2 it is sufficient to prove that the
set

S := (π−1
C

(K ) ∩ {ρ ≤ r}) ∩ ((R1+n + i(R>0 · e0)) × T N−1)

is compact. For z = (z1, . . . , zN ) ∈ S let zj = xj + iyj , where xj denotes
the real part and yj the imaginary part of zj . By the definition of S we have
y1 = y10 • e0 where y10 = y1 · e0. Moreover, we get 1

r ≤ η(y1) = (y10)
2 ≤ M .

Therefore the set {y1 ∈ R
1+n; (z1, . . . , zN ) ∈ S} = {t · e0; t2 ∈ [ 1

r , M], t > 0} is
compact.

By Remark 4.1 we get that the sets {(η(y1), η(yj ), y1•yj )∈R
3; (z1, ..., zN )∈

S} are bounded for j = 2, . . . , N . Therefore we get the boundedness of
{πC(yj + iy1) ∈ C; (z1, . . . , zN ) ∈ S}. Thus the yj , j = 2, . . . , N , with
(z1, . . . , zN ) ∈ S are lying in the sets M(I, Bj ) ∩ {y ∈ R

1+n; r ≤ η(y)}, where
I := {t · e0; t2 ∈ [ 1

r , M], t > 0} and Bj are compact subsets of C, contain-
ing {πC(yj + iy1) ∈ C; (z1, . . . , zN ) ∈ S}. By Corollary 4.1 these sets are
compact, which implies that the set {(y1, . . . , yN ) ∈ R

(1+n)×N ; (z1, . . . , zN ) ∈
S} is compact. Hence using Lemma 4.3 it follows that {(x1, . . . , xN ) ∈
R

(1+n)×N ; (z1, . . . , zN ) ∈ S} is bounded. Thus S is bounded and therefore
compact.

5. – Saturatedness of the extended future tube

We call A ⊂ X saturated with respect to a map p : X → Y if A is the
inverse image of a subset of Y .

Let πC : C
(1+n)×N → C

(1+n)×N //SOC(1, n) be the analytic Hilbert quotient,
which is given by the algebra of SOC(1, n)-invariant polynomials functions on
C

(1+n)×N (see Section 1) and let Ur denote the set {z ∈ T N ; ρ(z) < r} for some
r ∈ R ∪ {+∞}, where ρ is the strictly plurisubharmonic exhaustion function,
which we defined in Section 4.

Theorem 5.1. The set SOC(1, n) · Ur = SOC(1, n) · {z ∈ T N ; ρ(z) < r} is
saturated with respect to πC.

It is well known, that each fiber of πC contains exactly one closed orbit
of SOC(1, n) (see Section 1). Moreover, every orbit contains a closed orbit in
its closure. Therefore it is sufficient to prove

Proposition 5.1. If z ∈ Ur and SOC(1, n)·u is the closed orbit in SOC(1, n) · z,
then SOC(1, n) · u ∩ Ur = ∅.

The idea of proof is to construct a one-parameter group γ of SOC(1, n),
such that γ (t)z ∈ Ur for |t | ≤ 1 and limt→0 γ (t)z ∈ SOC(1, n) · u.

In the following, let z = (z1, . . . , zN ) ∈ Ur and denote by L(z) = Cz1 +
· · ·+CzN the C-linear subspace of C

1+n spanned by z1, . . . , zN . The subspace
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of isotropic vectors in L(z) with respect to the Lorentz product is denoted by
L(z)0, i.e., L(z)0 = {w ∈ L(z); w • v = 0 for all v ∈ L(z)}. Let L(z)0 be its
conjugate, i.e., L(z)0 = {v̄; v ∈ L(z)0}.

Lemma 5.1. For all ω = 0, ω ∈ L(z)0 we have η(Im(ω)) < 0.

Proof. Let ω = ω1 + iω2 with ω1 = Re(ω), ω2 = Im(ω). Assume that
η(Im(ω)) = η(ω2) ≥ 0. Since ω ∈ L(z)0, we have 0 = η(ω) = η(ω1)−η(ω2)+
2iω1 • ω2.

If η(ω2) > 0, i.e., ω2 ∈ C or ω2 ∈ −C , then ω1 • ω2 = 0 contradicts
η(ω1) = η(ω2) > 0. Thus assume η(ω1) = η(ω2) = 0 and ω1 • ω2 = 0. Hence
ω1 and ω2 are R-linearly dependent and therefore there is a λ ∈ C, ω3 ∈ R

1+n

such that ω = λω3 and ω3 • e0 ≥ 0. We have η(ω3) = 0 and, since ω3 ∈
L(z)0, e0 • ω3 ≥ 0 and z1 ∈ T , we also have 0 = ω3 • Im(z1). This implies by
the definition of C that ω3 = 0.

Corollary 5.1. For ω ∈ L(z)0, ω = 0, we have ω • ω̄ < 0. In particular,
L(z)0 ∩ L(z)0 = {0} and the complex Lorentz product is non-degenerate on L(z)0 ⊕
L(z)0.

Corollary 5.2. Let W := (L(z) ⊕ L(z))⊥ := {v ∈ C
1+n; v • u = 0 for all

u ∈ L(z)0 ⊕ L(z)0}. Then

L(z) = L(z)0 ⊕ (L(z) ∩ W ).

Proof of Proposition 5.1. Let z ∈ Ur . We use the notation of Corollary
5.2. Define

γ : C
∗ → SOC(1, n) by γ (t)v =




tv for v ∈ L(z)0

t−1v for v ∈ L(z)0

v for v ∈ W
.

Every component zj of z is of the form zj = uj + ωj where uj ∈ W and ωj ∈
L(z)0 are uniquely determined by zj . Recall that W is the set {v ∈ C

1+n; v•u =
0 for all u ∈ L(z)0 ⊕ L(z)0}. Since limt→0 γ (t)zj = uj and L(u)0 = {0} for
u = (u1, . . . , uN ), u lies in the unique closed orbit in SOC(1, n).z (see Lemma
2.1). It remains to show that u ∈ Ur . For every t ∈ C we have

η(Im(uj + tωj )) = η(Im(uj )) + |t |2η(Im(ωj )).

Since η(Im(uj + ωj )) > 0 and η(Im(ωj )) ≤ 0, this implies η(Im(uj + tωj )) ∈
C± for all t ∈ [0, 1]. Moreover, η(Im(zj )) < η(Im(uj )), for every j . Thus
ρ(z) > ρ(u) and therefore u ∈ Ur .

Corollary 5.3. The extended future tube is saturated with respect to πC.

Remark 5.1. The function f : R → R, t �→ η(Im(uj + tωj )), is strictly
concave if ωj = 0. The proof shows uj + tωj ∈ T for all t ∈ R.
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6. – The Kählerian reduction of the extended future tube

If one is only interested in the statement of the future tube conjecture, one
can simply apply the main result in [He2] (Theorem 1 in Section 2). Our goal
here is to show that much more is true.

For z ∈ C
(1+n)×N let x = 1

2 (z + z̄) be the real and y = 1
2i (z − z̄) the

imaginary part of z, i.e., z = (z1, . . . , zN ) = (x1, . . . , xN ) + i(y1, . . . , yN )

in the obvious sense. The strictly plurisubharmonic function ρ : T N → R,

ρ(z) = 1
η(y1)

+ · · · + 1
η(yN )

defines for every ξ ∈ so(1, n) = o(1, n) the function

µξ(z) = dρ(z)(iξ z) = d

dt

∣∣∣
t=0

ρ(exp i tξ · z).

Here of course so(1, n) = o(1, n) denotes the Lie algebra of OR(1, n). The
real group SOR(1, n)0 acts by conjugation on so(1, n) and therefore by duality
on the dual vector space so(1, n)∗. It is easy to check that the map ξ → µξ

depends linearly on ξ . Thus

µ : T N → so(1, n)∗, µ(z)(ξ) := µξ(z),

is a well defined SOR(1, n)0-equivariant map. In fact µ is a moment map with
respect to the Kähler form ω = 2i∂∂̄ρ.

In order to emphasizes the general ideas, we set G := SOR(1, n)0, GC :=
SOC(1, n), X := T N and Z := GC · X . The corresponding analytic Hilbert
quotient, induced by πC : C

(1+n)×N → C
(1+n)×N //SOC(1, n) are denoted by

πX : X → X//G, πZ : Z → Z//GC. Note that, by what we proved, we have
X//G = Z//GC.

Proposition 6.1.
i. For every q ∈ Z//GC we have (πC)−1(q) ∩ µ−1(0) = G · x0 for some x0 ∈

µ−1(0) and GC · x0 is a closed orbit in Z .

ii. The inclusion µ−1(0)
ι→ X ⊂ Z induces a homeomorphism µ−1(0)/G

ῑ→
Z//GC.

Proof. A simple calculation shows that the set of critical points of ρ|GC ·x∩
X, i.e., µ−1(0)∩ GC · x, consists of a discrete set of G-orbits. Moreover, every
critical point is a local minimum (see [He2], Proof of Lemma 2 in Section 2).

On the other hand Remark 5.1 of Section 5 says that if ρ|GC · x ∩ X has
a local minimum in x0 ∈ GC · x ∩ X, then GC · x0 = GC · x is necessarily
closed in Z . Moreover, ρ|GC · x ∩ X is then an exhaustion and therefore
µ−1(0)∩ (GC · x0 ∩ X) = G · x0 (see [He2], Lemma 2 in Section 2). This proves
the first part.

The statement i. implies that ι : µ−1(0) ↪→ X ⊂ Z induces a bijective
continuous map ῑ : µ−1(0)/G → Z//GC. Since the G-action on X is proper
and µ−1(0) is closed, the action on µ−1(0) is proper. In particular µ−1(0)/G
is a Hausdorff topological space.
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Theorem 5.1 implies that ῑ is a homeomorphism, since for every sequence
qα → q0 in Z//GC we find a sequence (xα) such that xα are contained in a
compact subset of µ−1(0) and πC(xα) = qα. Thus every convergent subsequence
of (xα) has a limit point in G · x0 where πC(x0) = q0.

Proposition 6.2. The restriction ρ|µ−1(0) : µ−1(0) → R induces a strictly
plurisubharmonic continuous exhaustion ρ̄ : Z//GC → R.

Proof. The exhaustion property for ρ̄ follows from Theorem 4.1. The
argument that ρ̄ is strictly plurisubharmonic is the same as in [HeHuL].

Theorem 6.1. The extended future tube Z is a domain of holomorphy.

Proof. Proposition 6.2 implies that Z//GC is a Stein space (see [N] The-
orem II). Hence Z is a Stein space.

In fact, much more has been proved here. We would like to comment on
this. By definition, an analytic subset of a complex manifold is closed. For the
following recall that orbit-connectedness is a condition on the GC-orbits.

Proposition 6.3. Every analytic G-invariant subset A of X is orbit connected
in Z and GC · A is an analytic subset of Z. In particular, GC · A is a Stein space.
Moreover the restriction maps

O(Z)GC → O(GC · A)GC → O(A)G

are surjective.

Proof. If b ∈ GC · A ∩ X , then b = g · a for some g ∈ GC and a ∈ A.
Hence g ∈ �GC(a) = {g ∈ GC; g·a ∈ X}. The identity principle for holomorphic
functions shows that �GC(a) · a ∈ A. Thus b ∈ A This shows GC · A ∩ X = A.
But {g · X; g ∈ GC} is an open covering of X such that GC · A ∩ g · X = g · A.
This shows that GC · A is an analytic subset of Z . In particular, it is a Stein
space. The last statement follows from orbit connectedness (see [He1]).

Proposition 6.4. For every G-invariant analytic subset A, its saturation
Â = π−1

X (πX (A)) is an analytic subset of X. Moreover, Â//G is canonically
isomorphic to A//G and π Â : Â → Â//G ⊂ X//G is the Hilbert quotient of Â
whose restriction to A gives the analytic Hilbert quotient of A

Proof. We already know that Ac = GC · A is an analytic subset of Z . Its
saturation Âc = π−1

Z (πZ (Ac)) = π−1
Z (πZ (A)) is an analytic subset of Z and it

is easily checked that Â = Âc ∩ X = π−1
X (πX (A)) has the desired properties.
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Gebäude NA 4/74
D-44780 Bochum, Germany
heinzner@cplx.ruhr-uni-bochum.de

Fakultät und Institut für Mathematik
Ruhr-Universität Bochum
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