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Complex Geodesics of the Minimal Ball in C
n

PETER PFLUG – EL HASSAN YOUSSFI

Abstract. In this note we give a characterization of the complex geodesics of the
minimal ball in C

n . This answers a question posed by Jarnicki and Pflug (cf. [JP],
Example 8.3.10)
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1. – Introduction

Let

B∗ :=
{

z ∈ C
n : N∗(z) :=

√
|z|2 + |z • z| < 1

}
, where z • z := z2

1 + · · · + z2
n,

be the so-called minimal ball in C
n (see [HP]). Recall that N∗ is a norm on

C
n . This ball has been shown to be of interest in several recent works ([K],

[MY], [OY], [OPY], [Z]). In particular, it is a non Lu Qi-Keng domain for
n ≥ 4 (see [PY]), and it is neither homogeneous nor Reinhardt. Furthermore,
the boundary ∂B∗ of B∗ is smooth only outside of the set {z ∈ C

n : z • z = 0}
and smooth boundary points are strictly pseudoconvex.

Denote by � the unit disc in C. The first goal of this paper is to establish
an explicit necessary form for a mapping ϕ : � −→ B∗ to be a complex geodesic
(for definitions and properties see [JP]). Observe that complex geodesics give
important information about the complex geometry of the domain. The first
main result is:

Theorem A. A complex geodesic ϕ = (ϕ1, . . . , ϕn) : � −→ B∗ is of the form

(1.1) ϕj (λ) = aj

(
λ − αj1

1 − ᾱj1λ

)kj1
(

λ − αj2

1 − ᾱj2λ

)kj2 (1 − ᾱj1λ)(1 − ᾱj2λ)

(1 − ᾱλ)2
,
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where aj ∈ C, α ∈ �, kjs ∈ {0, 1}, αjs ∈ � and αjs ∈ � whenever kjs = 1,
s = 1, 2, and (kj1, kj2) �= (1, 1), j = 1, . . . , n. Moreover, a geodesic through two
different points is uniquely determined (up to automorphisms of �). In addition,
ϕ • ϕ has the form

(1.2) ϕ • ϕ = b
(

λ − β1

1 − β̄1λ

)k1
(

λ − β2

1 − β̄2λ

)k2 (1 − β̄1λ)2(1 − β̄2λ)2

(1 − ᾱλ)4
,

where b ∈ C and ks ∈ {0, 1}, βs ∈ � for s = 1, 2 with the understanding that
βs ∈ � whenever ks = 1. In particular, if ϕ • ϕ �≡ 0, then ϕ • ϕ has at most two
zeros in �.

A second goal is to give necessary and sufficient conditions for a mapping
of the form (1.1) and (1.2) to be a complex geodesic from � into B∗. See
Proposition 3.3 below.

2. – Proof of Theorem A

For w ∈ C
n, let

q̂(w) := max{�(z • w) : z ∈ ∂B∗}.
Then by Corollary 8.2.8 in [JP] we have

Lemma 2.1. A holomorphic mapping ϕ : � −→ B∗ is a complex geodesic if
and only if its boundary values ϕ∗(λ) belong to ∂B∗ for almost all λ ∈ ∂� and ϕ is
stationary, i.e. there is a holomorphic mapping h : � −→ C

n with components in
the Hardy space H 1(�) such that

�(ϕ∗(λ) • h∗(λ)) = q̂
(

h∗(λ)

λ

)
,

for almost all λ ∈ ∂�.

In order to describe h∗(λ)/λ, λ ∈ ∂�, we need the following lemma.

Lemma 2.2. If w ∈ C
n \ {0} and z ∈ ∂B∗ satisfy

(2.1) �(w • z) = q̂(w),

then there are numbers � = �(z) > 0 and η = η(z) ∈ �(z)� such that

w = �

[
z̄ + z • z

|z • z| z
]

, if z • z �= 0,(2.2)

w = �z̄ + ηz, if z • z = 0(2.3)
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Proof. Suppose that z, w are as in the hypothesis of the lemma. By (2.1)
we see that

(2.4) �((ζ − z) • w) < 0 for all ζ ∈ B∗.

If z • z �= 0, then z is a smooth boundary point of B∗. So condition (2.4)
implies that w is normal to the tangent space to ∂B∗ at z. Thus there is a
� = �(z) > 0 for which (2.2) holds.

If z • z = 0, then (2.4) implies that w is normal to the tangent space at z
to the (2n − 3)-dimensional real manifold ∂B∗ ∩ {z ∈ C

n \ {0} : z • z = 0}. Thus
w is in the real span of the vectors z̄, i z̄, and z. Therefore, there are real
numbers � = �(z), µ = µ(z), and ν = ν(z) such that

w = (ν + iµ)z + �z.

Using (2.4) this shows that

� ((ν − iµ)(ζ • z)) + � (�(ζ • z)) < � for all ζ ∈ B∗.

Taking ζ = λz yields �(λ(ν − iµ)) < � for all λ ∈ �. This implies that
|η| ≤ �, where η := ν + iµ, and � > 0 (take ζ = 0).

Lemma 2.3. Let ϕ = (ϕ1, . . . , ϕn) : � −→ B∗ be a complex geodesic such
that the functions ϕ • ϕ and ϕj with j = 1, . . . , n do not vanish identically on �.
Then ϕ is of the form (1.1) and ϕ • ϕ is of the form (1.2).

Proof. By Lemmas 2.1 and 2.2 there are a holomorphic mapping h =
(h1, . . . , hn) : � −→ C

n with components in the Hardy space H 1(�) and a
function � : ∂� −→]0, +∞[ such that

(2.5)
h∗

j (λ)

λ
= �(λ)

[
ϕ∗

j (λ) + (ϕ∗ • ϕ∗)(λ)

|ϕ∗ • ϕ∗|(λ)
ϕ∗

j (λ)

]

almost everywhere on ∂�. Since ϕ∗(λ)•h∗(λ)
λ

= �(λ) > 0 for almost all λ ∈ �,
by [G] there are r > 0 and α ∈ � such that

(2.6) (ϕ • h)(λ) = r(λ − α)(1 − ᾱλ)

on �. Without loss of generality we may assume that r = 1. This implies that
�(λ) = |1 − λᾱ|2 almost everywhere on ∂� and that each hj is bounded on �.
So, the product of the functions h • h and ϕ • ϕ is in the Hardy space H 1(�)

and satisfies the following identity

(2.7)
(h∗ • h∗)(ϕ∗ • ϕ∗)(λ)

λ2
= 2|1 − λᾱ|4|ϕ∗(λ) • ϕ∗(λ)| > 0
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almost everywhere on ∂�. By Lemma 18 in [E] there exist a > 0 and β1, β2 ∈
� such that

(2.8)

(h • h)(ϕ • ϕ)(λ) = a(λ − β1)(1 − β̄1λ)(λ − β2)(1 − β̄2λ)

=
∏
j∈J

λ − βj

1 − β jλ
a

∏
j∈J

(1 − β jλ)2
∏
j /∈J

(−βj )(1 − β jλ)2

on �, where J := { j ∈ {1, 2} : βj ∈ �}. Writing h•h = BSF and ϕ•ϕ = B̃ S̃ F̃
where B, B̃ are Blaschke products, S, S̃ are singular inner functions and F, F̃
are singular outer functions, it follows from (2.8) that S = S̃ = 1 (see Lemma
19 in [E]). By (2.7) we see that

F(λ) = e
1

2π

∫ 2π

0
eiθ +λ

eiθ −λ
log |h∗•h∗(eiθ )|dθ

= e
1

2π

∫ 2π

0
eiθ +λ

eiθ −λ
log 2|1−eiθ ᾱ|4dθ = 2(1 − λᾱ)4, λ ∈ �.

Therefore, for some constant c,

(2.9) (B(ϕ • ϕ))(λ)=(B B̃ F̃)(λ)=c
(λ−β1)(1−β̄1λ)(λ−β2)(1− β̄2λ)

(1− λᾱ)4
, λ∈�.

This, combined with (2.8), implies that ϕ • ϕ is of one of the forms given in
the statement of the lemma. On the other hand, a little computing shows that
for each j = 1, . . . , n, we have

(2.10)
2(λ − α)(1 − ᾱλ)h∗

j (λ) − ((h∗ • h∗)ϕ∗
j )(λ)

4(λ − α)2(1 − ᾱλ)2
ϕ∗

j (λ) = 1

2
|ϕ∗

j (λ)|2 > 0

almost everywhere on ∂�. Using again Lemma 18 in [E] there exist rj > 0
and αj1, αj2 ∈ � such that

(2.11)
(

2(λ−α)(1 − ᾱλ)hj (λ)− (h • hϕj )(λ)
)
ϕj (λ) = rj

2∏
s=1

(λ−αjs)(1 − ᾱjsλ)

on �. If we write ϕj = Bj Sj Fj , where Bj , Sj , and Fj respectively are a
Blaschke product, a singular inner function, and a singular outer function, it
follows from (2.10) and (2.11) that Sj = 1 and

(2.12) Fj (λ) =
√

rj

2

2∏
s=1

1 − ᾱjsλ

1 − ᾱλ
.

Since by (2.11) the only possible zeros of Bj are the αjs’s, we see that ϕj has
one of the following three forms

aj
(1 − ᾱj1λ)(1 − ᾱj2λ)

(1 − ᾱλ)2
, aj

(λ − αj1)(1 − ᾱj2λ)

(1 − ᾱλ)2
, or aj

(λ − αj1)(λ − αj2)

(1 − ᾱλ)2

corresponding to the cases, where Bj has no zeros, one zero, or two zeros.
Since for all j = 1, . . . , n the function ϕj is bounded and ϕ is non-constant,
it follows that α ∈ �. This completes the proof of the lemma.
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Lemma 2.4. Let ϕ = (ϕ1, . . . , ϕn) : � −→ B∗ be a complex geodesic such
that ϕ • ϕ ≡ 0 and all the functions ϕj with j = 1, . . . , n do not vanish identically
on �. Then ϕ is of the form (1.1).

Proof. Applying Lemmas 2.1 and 2.2 we find a map h = (h1, . . . , hn) :
� −→ C

n with components in the Hardy space H 1(�) and two functions
� : ∂� −→]0, +∞[ and η : ∂� −→ C such that |η| ≤ � in ∂� and

(2.13)
h∗

j (λ)

λ
= �(λ)ϕ∗

j (λ) + η(λ)ϕ∗
j (λ)

almost everywhere on ∂�. Since ϕ∗(λ)•h∗(λ)
λ

> 0 for almost all λ ∈ ∂�, by [G]
there are r > 0 and α ∈ � such that

(2.14) (ϕ • h)(λ) = r(λ − α)(1 − ᾱλ)

on �. Without loss of generality we may assume that r = 1. This implies that
�(λ) = |1−λᾱ|2 almost everywhere on ∂�. In particular, � and η are bounded
in ∂�. On the other hand a simple calculation gives the following identities

(2.15)


(h∗ • h∗)(λ)

λ2
= 2�(λ)η(λ)

‖h∗(λ)‖2 = �2(λ) + |η2(λ)|

almost everywhere on ∂�. Hence the function h •h belongs to the Hardy space
H 1(�).

Case 1: η = 0 on a set of positive measure on ∂�.

Then h • h ≡ 0 on � and so η = 0 a.e. on ∂�. Thus, by (2.13) we see
that

(2.16)
h∗

j (λ)

λ
= �(λ)ϕ∗

j (λ)

almost everywhere on ∂�. Now we observe that ϕ maps � to B and ϕ∗(λ) ∈ ∂B

for almost all λ ∈ ∂�, where B denotes the open unit ball in C
n . This, combined

with (2.16), implies that ϕ : � −→ B is a complex geodesic. Hence, applying
[JPZ], [JP], and [E], ϕ is of the form

ϕj (λ) = aj

(
λ − αj

1 − ᾱjλ

)kj 1 − ᾱjλ

1 − ᾱλ

for j = 1, . . . , n, where aj ∈ C, α ∈ �, kj ∈ {0, 1} and αj ∈ � with αj ∈ �

whenever kj = 0.
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Case 2: η �= 0 a.e. on ∂�.

Using (2.13) and (2.15), a little computing shows that

(2.17) ϕ∗
j (λ)

2h∗
j (λ)(h∗ • ϕ∗)(λ) − (h∗ • h∗)(λ)ϕ∗

j (λ)

λ2
= 2�2(λ)|ϕ∗

j (λ)|2 > 0

almost everywhere on ∂�. Hence, by Lemma 18 in [E],

(2.18) ϕj (λ)
(

2hj (λ)(h • ϕ)(λ) − (h • h)(λ)ϕj (λ)
)

= rj

2∏
s=1

(λ − αjs)(1 − ᾱjsλ),

where αjs ∈ � and rj ∈ R, rj > 0. Observe that the only possible zeros of
ϕj are αj1 and αj2. Let Bj , Fj , and Sj , respectively B̂j , F̂j , and Ŝj , be the
Blaschke factor, the outer factor, and the singular inner factor of the function
ϕj , respectively 2hj (h • ϕ) − (h • h)ϕj . By (2.17) we see that Sj = Ŝj = 1 and

(Fj F̂j )(λ) = e
1

2π

∫ 2π

0
eiθ +λ

eiθ −λ
log

(
2|1−ᾱeiθ |4|ϕ∗

j |2(eiθ )
)

dθ

= 2(1 − λᾱ)4 F2
j (λ).

Hence,
F̂j (λ) = 2(1 − λᾱ)4 Fj (λ).

On the other hand,

(Fj F̂j )(λ) = ãj

2∏
s=1

(1 − ᾱjsλ)2

with an ãj ∈ C. This implies that

(2.19) Fj (λ) = âj

2∏
s=1

(1 − ᾱjsλ)

(1 − λᾱ)

with an âj ∈ C. Now from (2.18) and (2.19) we obtain that ϕ has the desired
form. This completes the proof of the lemma.

The next step will be the proof of the uniqueness of a complex geodesic
passing through two different points. First we observe the following simple
fact.

Lemma 2.5. Assume that ϕ : � → B∗ and ψ : � → B∗ are two geodesics with
ϕ(0) = ψ(0) and ϕ′(0) = ψ ′(0). Let α and β be the numbers in the denominator
of the representation (1.1) of ϕ and ψ , respectively. Then α = β.
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Proof. We may assume that

ϕ(λ) = P(λ)

(1 − αλ)2
and ψ(λ) = Q(λ)

(1 − βλ)2
, λ ∈ �,

where P and Q are vectors of polynomials of degree ≤ 2 and α, β ∈ �. Then
1
2 (ϕ + ψ) is again such a geodesic; therefore, in virtue of Theorem A, it can
be written as

1

2
(ϕ + ψ)(λ) = R(λ)

(1 − γ λ)2
, λ ∈ �,

where R is a vector of polynomials of degree ≤ 2 and γ ∈ �. Let us suppose
that α �= β.

Case 1: γ = 0.

Then

P(λ)(1 − βλ)2 + Q(λ)(1 − αλ)2 = 2R(λ)(1 − αλ)2(1 − βλ)2, λ ∈ C.

Hence (1 − α ·)2/P and therefore ϕ is identically constant; a contradiction.

Case 2: γ �= 0.

Then for all λ ∈ C we have

P(λ)(1 −βλ)2(1 − γ λ)2 + Q(λ)(1 −αλ)2(1 − γ λ)2 = 2R(λ)(1 −αλ)2(1 −βλ)2.

Then γ = α or γ = β or (1 − γ ·)2/R. In the last case this would imply that
the geodesic 1

2 (ϕ +ψ) is constant which is impossible. So we may assume that
γ = α. Division leads to

P(λ)(1 − βλ)2 + Q(λ)(1 − αλ)2 = 2R(λ)(1 − βλ)2.

But then (1 − β ·)2/Q implies that ψ is a constant; a contradiction.

Lemma 2.6. A complex geodesic through two different points is uniquely de-
termined.

Proof. Suppose that Lemma 2.6 is not true. Then by Proposition 8.3.2
in [JP] there exist two different geodesics ϕ : � −→ B∗ and ψ : � −→ B∗
with ϕ(0) = ψ(0) and ϕ′(0) = ψ ′(0). Applying that B∗ is convex, then also
χt := ϕ + t (ψ −ϕ), t ∈ [0, 1], is a geodesic of B∗, and therefore a proper map.
Hence we have

(1 − ‖(ϕ + t Z)(λ)‖2)2 = |(ϕ + t Z) • (ϕ + t Z)(λ)|2, λ ∈ ∂�, t ∈ [0, 1],

where Z := ψ −ϕ. Therefore, exploiting the term in t4 we get ‖Z(λ)‖4 = |(Z •
Z)(λ)|2, λ ∈ ∂�. Write the complex vector Z = X+iY , where X, Y : � −→ R

n

are real vector-valued functions. Then ‖X (λ)‖‖Y (λ)‖ = |X (λ) • Y (λ)| meaning
that the vectors X (λ) and Y (λ) are parallel, λ ∈ ∂�. By assumption, Z(λ) �= 0
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for all λ ∈ ∂� except finitely many points. Moreover, Z has at least one zero
in �. Therefore, X |∂� �≡ 0, i.e. X (λ) �= 0 for λ in a subset E of ∂� of
positive measure. Hence Z(λ) = X (λ)(1 + iγ (λ)), λ ∈ E , for suitable real
numbers γ (λ). Assume for a moment we know that

(*) (ϕ • ϕ)(λ)(Z • Z)(λ) is real for all λ ∈ E .

According to Lemma 2.5 we may write

ϕ(λ) = P(λ)

(1 − αλ)2
and ψ(λ) = Q(λ)

(1 − αλ)2
, λ ∈ �,

where P and Q are vectors of polynomials of degree ≤ 2 and α ∈ �. By our
assumption on the geodesics it follows that

P(0) = Q(0) and P ′(0) = Q′(0).

Therefore, there is a vector C ∈ C
n such that (P − Q)(λ) = Cλ2, λ ∈ C. Then

for λ ∈ E it follows from our previous assumption (∗) that

(C • C)(P • P)(λ)

λ4|1 − αλ|4 = (C • C)λ4(P • P)(λ)

|1 − αλ|4 , λ ∈ E .

Therefore, (C • C)(P • P)(λ) = λ8(C • C)(P • P)(λ), λ ∈ E . Observe that
(C • C) �= 0, since for λ ∈ E we have X (λ) �= 0; in particular 0 �= (1 +
iγ (λ))2‖X (λ)‖2 = (Z • Z)(λ) = (C •C) λ4

(1−αλ)4
. So , if P(λ) = a0 + a1λ+ a2λ

2

and P̃(λ) = ā2 + ā1λ + ā0λ
2, λ ∈ C, with aj ∈ C

n , j = 0, 1, 2, we get

(C • C)

(C • C)
(P • P)(λ) = λ4(P̃ • P̃)(λ), λ ∈ C.

From this we see that a0 • a0 = a0 • a1 = a1 • a2 = a1 • a1 + 2a0 • a2 = 0 and
(C • C)(a2 • a2) = (C • C)(a2 • a2).

In particular, we have

(2.22) (ϕ • ϕ)(λ) = (a2 • a2)λ
4

(1 − αλ)4
, λ ∈ �.

Recall that, if ϕ • ϕ �≡ 0, then ϕ • ϕ has at most two zeros (counted with
multiplicities) in �. Therefore, in view of (2.22), we must have ϕ • ϕ ≡ 0.

The same argument leads to ψ•ψ ≡ 0 and ϕ+ψ

2 • ϕ+ψ

2 ≡ 0 on �. Therefore,
ϕ • ψ ≡ 0 on �, which implies that Z • Z ≡ 0 on �; a contradiction.

Lemma 2.7. Let ϕ : � −→ B∗ be a complex geodesic such that its j -th
component is not identically zero. Then ϕj has at most one zero in �.
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Proof. Without loss of generality we may assume that j = n. Suppose
that ϕn has two zeros. Then there are λj ∈ �, j = 1, 2, with λ1 �= λ2 and
ϕn(λj ) = 0, j = 1, 2, or there is a λ0 ∈ � with ϕn(λ0) = ϕ′

n(λ0) = 0.
In the first case we know that ã1 := ϕ̃(λ1) �= ϕ̃(λ2) =: ã2 with ϕ̃ :=

(ϕ1, . . . , ϕn−1). Then ãj ∈ B̃∗, where B̃∗ is the (n − 1)-dimensional minimal
ball. By Proposition 8.1.15 in [JP] there is a geodesic ψ̃ : � −→ B̃∗ through the
points ãj , j = 1, 2. Put ψ := (ψ̃, 0) : � −→ B∗. Obviously, ψ is a geodesic
in B∗ through the points ϕ(λj ), j = 1, 2; a contradiction to Lemma 2.6.

In the second case a similar reasoning also leads to a contradiction.

Proof of Theorem A. The proof of Theorem A follows from the previous
lemmas and the fact that, if some of the components of the mapping ϕ is
identically zero, then ϕ can be thought as a complex geodesic of a lower
dimensional minimal ball obtained by deleting the corresponding components
in C

n .

3. – Characterization of complex geodesics

Throughout this section we shall denote by F the collection of all mappings
ϕ of the form (1.1) that satisfy (1.2). For a ϕ ∈ F we put

sj := ᾱj1 + ᾱj2, pj := ᾱj1ᾱj2, j = 1, . . . , n..

moreover, set s := β̄1 + β̄2 and p := β̄1β̄2 (here the αjk’s and the βk’s are the
numbers in representation (1.1) and (1.2) of ϕ).

Lemma 3.1. Let ϕ be a mapping in F. Then the following properties are
equivalent:
(1) ϕ∗(λ) ∈ ∂B∗ for almost all λ ∈ ∂�;
(2) ϕ satisfies the following identities

(3.1)



n∑
j=1

|aj |2 pj + |b|p = ᾱ2,

n∑
j=1

|aj |2(1+ |sj |2 + |pj |2)+ |b|(1+|s|2 + |p|2)=1+ 4|α|2+ |α|4,

n∑
j=1

|aj |2(sj + s̄j pj ) + |b|(s + s̄ p) = 2ᾱ(1 + |α|2).
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Proof. In view of (1.1) and (1.2) we have for almost all λ ∈ ∂�

‖ϕ∗(λ)‖2 =
n∑

j=1

|aj |2 |1 − ᾱj1λ|2|1 − ᾱj2λ|2
|1 − ᾱλ|4

|(ϕ • ϕ)∗(λ)| = |b| |1 − β̄1λ|2|1 − β̄2λ|2
|1 − ᾱλ|4 .

Hence, (1) is true if and only if the following equality holds for almost all
λ ∈ ∂�, and then for all λ ∈ C,

n∑
j=1

|aj |2(λ − αj1)(1 − ᾱj1λ)(λ − αj2)(1 − ᾱj2λ)

+ |b|(λ − β1)(1 − β̄1λ)(λ − β2)(1 − β̄2λ) = (λ − α)2(1 − ᾱλ)2.

Identifying the polynomial coefficients of both sides of the latter equality shows
finally that (3.1) is equivalent to part (1).

Remark. Observe that in the description (3.1) we need to know the form
of ϕ • ϕ as in (1.2). In fact, we use the βj ’s in Lemma 3.1.

We also have to describe the elements of F that are stationary maps. Since
here the form of ϕ •ϕ becomes important, we shall discuss the following cases:

Case 0: ϕ • ϕ has no zeros in �, that is, k1 = k2 = 0.
Case 1: ϕ • ϕ has exactly one zero in �. Here we may assume, without loss

of generality, that k1 = 1 and k2 = 0.
Case 2: ϕ • ϕ has exactly two zeros in �, that is, k1 = k2 = 1.

To each of these cases we associate, respectively, one of the holomorphic
functions on �

N0(λ) := b̄

|b|
(1 − ᾱλ)2(λ − β1)(λ − β2)

(1 − β̄1λ)(1 − β̄2λ)
, λ ∈ �,

N1(λ) := b̄

|b|
(1 − ᾱλ)2(λ − β2)

1 − β̄2λ
, λ ∈ �,

N2(λ) := b̄

|b| (1 − ᾱλ)2, λ ∈ �.

If ϕ ∈ F, let J0(ϕ) and J1(ϕ) be the partition of the set {1, . . . , n} such that
for j ∈ J0(ϕ) the component function ϕj has no zeros in � and for j ∈ J1(ϕ)

the component function ϕj has exactly one zero in � (we may assume without
loss of generality that this zero is αj1). Then we have the following



COMPLEX GEODESICS OF THE MINIMAL BALL IN C
n 63

Lemma 3.2. Let ϕ be a mapping in F such that ϕ•ϕ does not vanish identically.
Then the following properties are equivalent:

(1) ϕ is a stationary map;
(2) there is l ∈ {0, 1, 2}

(3.2)


āj (α − αj1)(α − αj2) + aj Nl(α)

(1− ᾱj1α)(1 − ᾱj2α)

(1− |α|2)2
=0, j ∈ J0(ϕ),

āj (1 − ᾱj1α)(α − αj2) + aj Nl(α)
(α − αj1)(1 − ᾱj2α)

(1 − |α|2)2
=0, j ∈ J1(ϕ).

Proof. Assume that ϕ is stationary. Then, by the proof of Theorem 2.3,
there are a holomorphic mapping h = (h1, . . . , hn) : � −→ C

n with components
in the Hardy space H 1(�) and an α ∈ � such that

(3.3)
h∗

j (λ)

λ
= |1 − λᾱ|2

[
ϕ∗

j (λ) + (ϕ∗ • ϕ∗)(λ)

|ϕ∗ • ϕ∗|(λ)
ϕ∗

j (λ)

]

almost everywhere on ∂�.
If ϕ • ϕ has no zero in �, i.e. k1 = k2 = 0, then

(ϕ∗ • ϕ∗)(λ)

|ϕ∗ • ϕ∗|(λ)
= N0(λ)

(λ − α)2

almost everywhere on ∂�.
If ϕ • ϕ has exactly one zero in �, and assume without loss of generality

that k1 = 1 and k2 = 0, then

(ϕ∗ • ϕ∗)(λ)

|ϕ∗ • ϕ∗|(λ)
= N1(λ)

(λ − α)2

almost everywhere on ∂�.
Finally, if ϕ • ϕ has two zeros in �, then

(ϕ∗ • ϕ∗)(λ)

|ϕ∗ • ϕ∗|(λ)
= N2(λ)

(λ − α)2

almost everywhere on ∂�. In the first case we have

(λ − α)h∗
j (λ) = λ(λ − α)|1 − λᾱ|2

[
ϕ∗

j (λ) + N0(λ)

(λ − α)2
ϕ∗

j (λ)

]
= (λ − α)2(1 − λᾱ)

[
ϕ∗

j (λ) + N0(λ)

(λ − α)2
ϕ∗

j (λ)

]
= (1 − λᾱ)

[
āj (λ − αj1)(λ − αj2) + aj N0(λ)

(1− ᾱj1λ)(1− ᾱj2λ)

(1− ᾱλ)2

]



64 PETER PFLUG – EL HASSAN YOUSSFI

almost everywhere on ∂�. This implies that

(λ − α)hj (λ) = (1 − λᾱ)

[
āj (λ − αj1)(λ − αj2) + aj N0(λ)

(1 − ᾱj1λ)(1 − ᾱj2λ)

(1 − ᾱλ)2

]
for all λ ∈ �. Hence we have the first equality in (3.2). The two remaining
equalities can be proved similarly. To prove the converse, we only consider the
first case, the other cases can be checked in a similar way. Assume that (3.2)
holds and let j satisfy the first equality in (3.2). Then the function

hj (λ) := 1 − λᾱ

λ − α

[
āj (λ − αj1)(λ − αj2) + aj N0(λ)

(1 − ᾱj1λ)(1 − ᾱj2λ)

(1 − ᾱλ)2

]

is holomorphic on the unit disc and belongs to the Hardy space H 1(�). In
addition its boundary values verify (3.3).

Combining Lemma 3.1 and Lemma 3.2 we obtain

Proposition 3.3. Let ϕ be a mapping in F such that ϕ • ϕ does not vanish
identically. Then ϕ is a complex geodesic if and only if ϕ satisfies (3.1) and (3.2).

Remark. We should point out that the above characterization involves the
shape (1.2) of ϕ • ϕ.

Now we discuss the case where ϕ • ϕ vanishes identically. Let ϕ =
(ϕ1, . . . , ϕn) be a mapping of the form (1.1). Then we define

Nj (λ) := (1 − ᾱλ)2ϕj (λ), λ ∈ �.

This is a complex polynomial
∑2

k=0 djkλ
k . We set

Ñj (λ) :=
2∑

k=0

d̄jkλ
2−k, λ ∈ �.

Observe that we have (λ − α)2ϕ̄j (λ) = Ñj (λ), λ ∈ ∂�.

Proposition 3.4. Let ϕ be a non-zero mapping of the form (1.1) such that
ϕ • ϕ ≡ 0. Then ϕ is stationary if and only if there is a γ ∈ � such that Ñj (α) =
γ Nj (α) for all j = 1, . . . , n.

Proof. Assume that ϕ is stationary (for details, see the proof of Lemma 2.4).
Then there are functions hj ∈ H 1(�), j = 1, . . . , n, such that

h∗
j (λ) = 1 − ᾱ

λ − α

(
Ñj (λ) + λ(λ − α)η(λ)

Nj (λ)

(1 − ᾱλ)3

)
, λ ∈ ∂�.
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Recall that (h • h)(λ) = 2�(λ)λ2, λ ∈ ∂�. Therefore,

h∗
j (λ) = 1 − ᾱλ

λ − α

(
Ñj (λ) + (h • h)(λ)Nj (λ)

2(1 − ᾱλ)4

)
, λ ∈ ∂�.

Hence we get

λ − α

1 − ᾱλ
hj (λ) = Ñj (λ) + (h • h)(λ)

2(1 − ᾱλ)4
Nj (λ), λ ∈ �;

in particular,

0 = Ñj (α) + (h • h)(α)

2(1 − |α|2)4
Nj (α).

Moreover,

|Ñj (α)| = |h • h)(α)|
2(1 − |α|2)4

|Nj (α)|.

Using that |(h • h)| ≤ 2�|η| ≤ 2�2 almost everywhere on ∂�, the maximum
principle leads to |Ñj (α)| ≤ |Nj (α)|. Therefore, γ ∈ ∂�, which finishes the
proof of the “if” part.

Assume now that the condition on the right-hand side in Proposition 3.4
is satisfied. Define

hj (λ) := 1 − ᾱλ

λ − α

(
Ñj (λ) − γ Nj (λ)

)
, λ ∈ �, j = 1, . . . , n.

Then hj ∈ H 1(�) and

hj (λ)

λ
= |1 − ᾱλ|2ϕ̄j (λ) − γ

(1 − ᾱλ)3

λ(λ − α)
ϕj (λ), λ ∈ ∂�.

Setting η(λ) := −γ (1−ᾱλ)3

λ(λ−α)
, λ ∈ ∂�, we see that |η(λ)| ≤ |1 − ᾱλ|2 =: �(λ),

λ ∈ ∂� Hence, ϕ is a stationary map.

Remark. Observe that a geodesic ϕ for B∗ with ϕ • ϕ ≡ 0 is always a
proper map to the unit ball B; in virtue of the proof of Proposition 3.4, it is
also a geodesic for B iff γ can be chosen to be 0.

It would be of interest to find an effective formula for the Kobayashi
distance exploiting the form of the complex geodesics given above.
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