We develop a new method for proving the existence of a boundary trace, in the class of Borel measures, of nonnegative solutions of in a smooth domain under very general assumptions on . This new definition which extends the previous notions of boundary trace is based upon a sweeping technique by solutions of Dirichlet problems with measure boundary data. We also prove a boundary pointwise blow-up estimate of any solution of such inequalities in terms of the Poisson kernel. If the nonlinearity is very degenerate near the boundary, for example if , we exhibit a new full boundary blow-up phenomenon.
@article{ASNSP_2004_5_3_3_481_0, author = {Marcus, Moshe and V\'eron, Laurent}, title = {Boundary trace of positive solutions of nonlinear elliptic inequalities}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {481--533}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 3}, number = {3}, year = {2004}, mrnumber = {2099247}, zbl = {1121.35057}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2004_5_3_3_481_0/} }
TY - JOUR AU - Marcus, Moshe AU - Véron, Laurent TI - Boundary trace of positive solutions of nonlinear elliptic inequalities JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2004 SP - 481 EP - 533 VL - 3 IS - 3 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2004_5_3_3_481_0/ LA - en ID - ASNSP_2004_5_3_3_481_0 ER -
%0 Journal Article %A Marcus, Moshe %A Véron, Laurent %T Boundary trace of positive solutions of nonlinear elliptic inequalities %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2004 %P 481-533 %V 3 %N 3 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2004_5_3_3_481_0/ %G en %F ASNSP_2004_5_3_3_481_0
Marcus, Moshe; Véron, Laurent. Boundary trace of positive solutions of nonlinear elliptic inequalities. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 3, pp. 481-533. http://archive.numdam.org/item/ASNSP_2004_5_3_3_481_0/
[1] Singularités éliminables pour des équations semi-linéaires, Ann. Inst. Fourier (Grenoble) 34 (1984), 185-206. | Numdam | MR | Zbl
- ,[2] The heat equation with a singular potential, Trans. Amer. Math. Soc. 284 (1984), 121-139. | MR | Zbl
- ,[3] Nonlinear problems related to the Thomas-Fermi equation, unpublished paper, see [6]. | MR
- ,[4] An elliptic semilinear equation with source term involving boundary measures: the subcritical case, Rev. Mat. Iberoamericana 16 (2000), 477-513. | MR | Zbl
- ,[5] Une équation semi-linéaire avec conditions aux limites dans , unpublished paper. See also [32]-Chap. 4.
,[6] Some variational problems of the Thomas-Fermi type, in “Variational Inequalities”, R. W. Cottle, F. Giannessi and J.-L. Lions (eds.), Wiley, Chichester (1980), 53-73. | MR | Zbl
,[7] Extremal solutions and instantaneous complete blow-up for elliptic and parabolic problems, preprint. | MR
,[8] “Analyse Mathématique et Calcul Numérique”, Masson, Paris, 1987. | MR
- ,[9] “Classical Potential Theory and its Probabilistic Counterpart”, Springer-Verlag, Berlin-New York, 1984. | MR | Zbl
,[10] Trace on the boundary for solutions of nonlinear differential equations, Trans. Amer. Math. Soc. 350 (1998), 4499-4519. | MR | Zbl
- ,[11] Solutions of nonlinear differential equtions on a Riemannian manifold and their trace on the Martin boundary, Trans. Amer. Math. Soc. 350 (1998), 4521-4552. | MR | Zbl
- ,[12] Fine topology and fine trace on the boundary associated with a class of quasilinear differential equations, Comm. Pure Appl. Math. 51 (1998), 897-936. | MR | Zbl
- ,[13] Behavior at boundary of solutions of a weakly superlinear elliptic equation, Adv. Nonlinear Stud. 2 (2002), 147-176. | MR | Zbl
- ,[14] “Partial Differential Equations of Second Order”, 2nd Ed. Springer-Verlag, Berlin-New York, 1983. | MR | Zbl
- ,[15] Boundary singularities of solutions of some nonlinear elliptic equations, Duke Math. J. 64 (1991), 271-324. | MR | Zbl
- ,[16] Boundary trace of solutions of the Prescribed Gaussian curvature equation, Proc. Roy. Soc. Edinburgh 130 A (2000), 1-34. | MR | Zbl
- ,[17] On the support of measure-valued critical branching Brownian motion, Ann. Prob. 16 (1988), 200-221. | MR | Zbl
,[18] On solutions of , Comm. Pure Appl. Math. 10 (1957), 503-510. | MR | Zbl
,[19] Les solutions positives de dans le disque unité, C.R. Acad. Sci. Paris 317 Ser. I (1993), 873-878. | MR | Zbl
,[20] The brownian snake and solutions of in a domain, Probab. Theory Related Fields 102 (1995), 393-432. | MR | Zbl
,[21] Uniqueness and asymptotic behaviour of solutions with boundary blow-up for a class of nonlinear elliptic equations, Ann. Inst. H. Poincaré 14 (1997), 237-274. | Numdam | MR | Zbl
- ,[22] Traces au bord des solutions positives d'équations elliptiques non-linéaires, C.R. Acad. Sci. Paris 321 Ser. I (1995), 179-184. | MR | Zbl
- ,[23] Traces au bord des solutions positives d'équations elliptiques et paraboliques non-linéaires: résultats d'existence et d'unicité, C.R. Acad. Sci. Paris 323 Ser. I (1996), 603-608. | MR | Zbl
- ,[24] The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case, Arch. Ration. Mech. Anal. 144 (1998), 201-231. | MR | Zbl
- ,[25] The boundary trace of positive solutions of semilinear elliptic equations: the supercritical case, J. Math. Pures Appl. 77, 481-524 (1998). | MR | Zbl
- ,[26] Removable singularities and boundary traces, J. Math. Pures Appl. 80 (2001), 879-900. | MR | Zbl
- ,[27] The boundary trace and generalyzed boundary value problem for semilinear elliptic equations with coercive absorption, Comm. Pure Appl. Math. 56 (2003), 0689-0731. | MR | Zbl
- ,[28] Initial trace of positive solutions to semilinear parabolic inequalities, Adv. Nonlinear Studies 2 (2002), 395-436. | MR | Zbl
- ,[29] Scalar curvature and conformal deformation of hyperbolic space, J. Funct. Anal. 121 (1994), 15-77. | MR | Zbl
- - ,[30] Isotropic singularities of nonlinear elliptic inequalities, Ann. Inst. H. Poincaré 6 (1989), 37-72. | Numdam | MR | Zbl
- ,[31] An a priori interior estimate for the solution of a nonlinear problem representing weak diffusion, Nonlinear Anal. 5 (1981), 119-135. | MR | Zbl
,[32] “Singularities of Solutions of Second Order Quasilinear Equations”, Pitman Research Notes in Math. 353, Addison Wesley Longman Inc., 1996. | MR | Zbl
,