For large classes of complex Banach spaces (mainly operator spaces) we consider orbits of finite rank elements under the group of linear isometries. These are (in general) real-analytic submanifolds of infinite dimension but of finite CR-codimension. We compute the polynomial convex hull of such orbits explicitly and show as main result that every continuous CR-function on has a unique extension to the polynomial convex hull which is holomorphic in a certain sense. This generalizes to infinite dimensions results from a recent joint paper with D. Zaitsev in Inventiones math. 153, 45-104.
@article{ASNSP_2004_5_3_3_535_0, author = {Kaup, Wilhelm}, title = {On the {CR-structure} of certain linear group orbits in infinite dimensions}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {535--554}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 3}, number = {3}, year = {2004}, mrnumber = {2099248}, zbl = {1170.32314}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2004_5_3_3_535_0/} }
TY - JOUR AU - Kaup, Wilhelm TI - On the CR-structure of certain linear group orbits in infinite dimensions JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2004 SP - 535 EP - 554 VL - 3 IS - 3 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2004_5_3_3_535_0/ LA - en ID - ASNSP_2004_5_3_3_535_0 ER -
%0 Journal Article %A Kaup, Wilhelm %T On the CR-structure of certain linear group orbits in infinite dimensions %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2004 %P 535-554 %V 3 %N 3 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2004_5_3_3_535_0/ %G en %F ASNSP_2004_5_3_3_535_0
Kaup, Wilhelm. On the CR-structure of certain linear group orbits in infinite dimensions. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 3, pp. 535-554. http://archive.numdam.org/item/ASNSP_2004_5_3_3_535_0/
[1] “Real Submanifolds in Complex Spaces and Their Mappings”, Princeton Math. Series 47, Princeton Univ. Press, 1998. | MR | Zbl
- - ,[2] A property of the functions and distributions annihilated by a locally integrable system of complex vector fields, Ann. of Math. (2) 113 (1981), 387-421. | MR | Zbl
- ,[3] “CR Manifolds and the Tangential Cauchy-Riemann Complex”, Studies in Advanced Mathematics, CRC Press. Boca Raton, Ann Arbor, Boston, London 1991. | MR | Zbl
,[4] “Integration”, Hermann, Paris 1965.
,[5] “Complex Analysis on Infinite Dimensional Spaces”, Berlin-Heidelberg-New York, Springer, 1999. | MR | Zbl
,[6] Enveloppes polynômiales d'ensembles compacts invariants, Math. Nachr. 266 (2004), 20-26. | MR | Zbl
- ,[7] “Holomorphic Maps and Invariant Distances”, North Holland, Amsterdam, 1980. | MR | Zbl
- ,[8] Linear algebraic groups in infinite dimensions, Illinois J. Math. 21 (1977), 666-674. | MR | Zbl
- ,[9] Algebraic Characterization of Symmetric Complex Banach Manifolds, Math. Ann. 228 (1977), 39-64. | MR | Zbl
,[10] A Riemann Mapping Theorem for Bounded Symmetric Domains in Complex Banach Spaces, Math. Z. 183 (1983), 503-529. | MR | Zbl
,[11] On spectral and singular values in JB-triples, Proc. Roy. Irish. Acad. 96A (1996), 95-103. | MR | Zbl
,[12] Bounded symmetric domains and polynomial convexity, Manuscripta Math. 114 (2004), 391-398. | MR | Zbl
,[13] On the CR-structure of compact group orbits associated with bounded symmetric domains, Invent. Math. 153 (2003), 45-104. | MR | Zbl
- ,[14] “Jordan pairs”, Springer Lecture Notes 460, 1975. | MR | Zbl
,[15] Enveloppes polynomiales de compacts, Bull. Sci. Math. 116 (1992), 129-144. | MR | Zbl
,[16] “Randstrukturen beschränkter symmetrischer Gebiete”, Dissertation, Tübingen, 1995.
,