Non-Lipschitz coefficients for strictly hyperbolic equations
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 3 (2004) no. 3, pp. 589-608.

In the present paper we explain the classification of oscillations and its relation to the loss of derivatives for a homogeneous hyperbolic operator of second order. In this way we answer the open question if the assumptions to get C well posedness for weakly hyperbolic Cauchy problems or for strictly hyperbolic Cauchy problems with non-Lipschitz coefficients are optimal.

Classification: 35L15, 35L10, 35A05
Hirosawa, Fumihiko 1; Reissig, Michael 2

1 Department of Mathematics Nippon Institute of Technology Saitama 345-8501, Japan
2 Fakultät für Mathematik und Informatik TU Bergakademie Freiberg 09596 Freiberg, Germany
@article{ASNSP_2004_5_3_3_589_0,
     author = {Hirosawa, Fumihiko and Reissig, Michael},
     title = {Non-Lipschitz coefficients for strictly hyperbolic equations},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {589--608},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 3},
     number = {3},
     year = {2004},
     mrnumber = {2099250},
     zbl = {1170.35471},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_2004_5_3_3_589_0/}
}
TY  - JOUR
AU  - Hirosawa, Fumihiko
AU  - Reissig, Michael
TI  - Non-Lipschitz coefficients for strictly hyperbolic equations
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2004
SP  - 589
EP  - 608
VL  - 3
IS  - 3
PB  - Scuola Normale Superiore, Pisa
UR  - http://archive.numdam.org/item/ASNSP_2004_5_3_3_589_0/
LA  - en
ID  - ASNSP_2004_5_3_3_589_0
ER  - 
%0 Journal Article
%A Hirosawa, Fumihiko
%A Reissig, Michael
%T Non-Lipschitz coefficients for strictly hyperbolic equations
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2004
%P 589-608
%V 3
%N 3
%I Scuola Normale Superiore, Pisa
%U http://archive.numdam.org/item/ASNSP_2004_5_3_3_589_0/
%G en
%F ASNSP_2004_5_3_3_589_0
Hirosawa, Fumihiko; Reissig, Michael. Non-Lipschitz coefficients for strictly hyperbolic equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 3 (2004) no. 3, pp. 589-608. http://archive.numdam.org/item/ASNSP_2004_5_3_3_589_0/

[1] R. Agliardi - M. Cicognani, Operators of p-evolution with non regular coefficients in the time variable, J. Differential Equations 202 (2004), 143-157. | MR | Zbl

[2] M. Cicognani, Coefficients with unbounded derivatives in hyperbolic equations, to appear in Math. Nachr. | MR | Zbl

[3] F. Colombini - E. De Giorgi - S. Spagnolo, Sur les equations hyperboliques avec des coefficients qui ne dependent que du temps, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 6 (1979), 511-559. | EuDML | Numdam | MR | Zbl

[4] F. Colombini - D. Del Santo - T. Kinoshita, Well-posedness of the Cauchy problem for a hyperbolic equation with non-Lipschitz coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 1 (2002), 327-358. | EuDML | Numdam | MR | Zbl

[5] F. Colombini - D. Del Santo -M. Reissig, On the optimal regularity of coefficients in hyperbolic Cauchy problems, Bull. Sci. Math. 127 (2003), 328-347. | MR | Zbl

[6] F. Colombini - N. Lerner, Hyperbolic operators with non-Lipschitz coefficients, Duke Math. J. 77 (1995), 657-698. | MR | Zbl

[7] F. Hirosawa, On the Cauchy problem for second order strictly hyperbolic equations with non-regular coefficients, Math. Nachr. 256 (2003), 29-47. | MR | Zbl

[8] F. Hirosawa - M. Reissig, Well-posedness in Sobolev spaces for second order strictly hyperbolic equations with non-differentiable oscillating coefficients, Ann. Global Anal. Geom. 25 (2004), 99-119. | MR | Zbl

[9] S. Mizohata, “Theory of the partial differential equations", Cambridge University Press, 1973. | MR | Zbl

[10] M. Reissig, Hyperbolic equations with non-Lipschitz coefficients, Rend. Sem. Mat. Univ. Politec. Torino 61 (2003), 135-182. | MR | Zbl

[11] M. Reissig - K. Yagdjian, L p -L q estimates for the solutions of strictly hyperbolic equations of second order with increasing in time coefficients, Math. Nachr. 214 (2000), 71-104. | MR | Zbl

[12] K. Yagdjian, “The Cauchy Problem for Hyperbolic Operators. Multiple Characteristics, Micro-Local Approach", Akademie-Verlag, Berlin, 1997. | MR | Zbl

[13] T. Yamazaki, On the L 2 ( n ) well-posedness of some singular or degenerate partial differential equations of hyperbolic type, Comm. Partial Differential Equations 15 (1990), 1029-1078. | MR | Zbl