We study (rational) sweeping out of general hypersurfaces by varieties having small moduli spaces. As a consequence, we show that general
@article{ASNSP_2004_5_3_3_637_0, author = {Voisin, Claire}, title = {A geometric application of {Nori's} connectivity theorem}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {637--656}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 3}, number = {3}, year = {2004}, mrnumber = {2099253}, zbl = {1110.14008}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2004_5_3_3_637_0/} }
TY - JOUR AU - Voisin, Claire TI - A geometric application of Nori's connectivity theorem JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2004 SP - 637 EP - 656 VL - 3 IS - 3 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2004_5_3_3_637_0/ LA - en ID - ASNSP_2004_5_3_3_637_0 ER -
%0 Journal Article %A Voisin, Claire %T A geometric application of Nori's connectivity theorem %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2004 %P 637-656 %V 3 %N 3 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2004_5_3_3_637_0/ %G en %F ASNSP_2004_5_3_3_637_0
Voisin, Claire. A geometric application of Nori's connectivity theorem. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 3, pp. 637-656. http://archive.numdam.org/item/ASNSP_2004_5_3_3_637_0/
[1] Noether-Lefschetz locus for Beilinson-Hodge cycles on open complete intersections, preprint 2003.
- ,[2] Infinitesimal variations of Hodge structures and the global Torelli problem, In: “Journées de géométrie algébrique", A. Beauville (eds.), Sijthoff-Nordhoff, 1980, pp. 51-76. | MR | Zbl
- ,[3] On the locus of Hodge classes, J. Amer. Math. Soc. (2) 8 (1995), 483-506. | MR | Zbl
- - ,[4] Subvarieties of generic hypersurfaces in any variety, Math. Proc. Cambr. Philos. Soc. (2002). | MR | Zbl
- - ,[5] Curves in generic hypersurfaces, Ann. Sci. École Norm. Sup. 19 (1986), 629-636. | Numdam | MR | Zbl
,[6] Curves on higher-dimensional complex projective manifolds, In: “Proceedings of the International Congress of Mathematicians", (2) 1 (Berkeley, Calif., 1986), 634-640. | MR | Zbl
,[7] “Higher dimensional complex geometry", Astérisque 166, SMF (1988). | Numdam | MR | Zbl
- - ,[8] Twisted genus bounds for subvarieties of generic hypersurfaces, Amer. J. Math. 126 (2004), 89-120. | MR | Zbl
- ,[9] Théorèmes de Lefschetz et critères de dégénérescence de suites spectrales, Publ. Math. Inst. Hautes Études Sci. 35 (1968), 107-126. | Numdam | MR | Zbl
,[10] Théorie de Hodge II, Publ. Math. Inst. Hautes Études Sci. 40 (1971), 5-57. | Numdam | MR | Zbl
,
[11] La conjecture de Weil pour les surfaces
[12] Subvarieties of generic complete intersections, Invent. Math. 94 (1988), 163-169. | MR | Zbl
,[13] Restrictions of linear series to hyperplanes, and some results of Macaulay and Gotzmann, In: “Algebraic curves and projective geometry", E. Ballico - C. Ciliberto (eds.), Lecture Notes in Mathematics 1389, Springer-Verlag 1989, pp. 76-86. | MR | Zbl
,[14] A new proof of the explicit Noether-Lefschetz theorem, J. Differential Geom. 27 (1988), 155-159. | MR | Zbl
,[15] Periods of certain rational integrals, I, II, Ann. of Math. 90 (1969), 460-541. | MR | Zbl
,[16] Hyperbolic and diophantine Analysis, Bull. Amer. Math. Soc. (2) 14 (1986), 159-205. | MR | Zbl
,[17] Rational equivalence of zero-cycles on surfaces, J. Math. Kyoto Univ. 9 (1968), 195-204. | MR | Zbl
,[18] Algebraic cycles and Hodge theoretic connectivity, Invent. Math. 111 (1993), 349-373. | MR | Zbl
,[19] Asymptotic bounds for Nori's connectivity theorem, preprint 2002. | MR
,[20] On a conjecture of Clemens on rational curves on hypersurfaces, J. Differential Geom. 44 (1996), 200-214, 49 (1998), 601-611. | MR | Zbl
,[21] “Hodge Theory and Complex Algebraic Geometry II", Cambridge University Press, 2003. | MR | Zbl
,[22] Nori's connectivity theorem and higher Chow groups, J. Inst. Math. Jussieu (2) 1 (2002), 307-329. | MR | Zbl
,