We prove the uniqueness of weak solutions for the Cauchy problem for a class of transport equations whose velocities are partially with bounded variation. Our result deals with the initial value problem where is the vector fieldwith a boundedness condition on the divergence of each vector field . This model was studied in the paper [LL] with a regularity assumption replacing our hypothesis. This settles partly a question raised in the paper [Am]. We examine the details of the argument of [Am] and we combine some consequences of the Alberti rank-one structure theorem for vector fields with a regularization procedure. Our regularization kernel is not restricted to be a convolution and is introduced as an unknown function. Our method amounts to commute a pseudo-differential operator with a function.
@article{ASNSP_2004_5_3_4_681_0, author = {Lerner, Nicolas}, title = {Transport equations with partially $BV$ velocities}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {681--703}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 3}, number = {4}, year = {2004}, mrnumber = {2124585}, zbl = {1170.35362}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2004_5_3_4_681_0/} }
TY - JOUR AU - Lerner, Nicolas TI - Transport equations with partially $BV$ velocities JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2004 SP - 681 EP - 703 VL - 3 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2004_5_3_4_681_0/ LA - en ID - ASNSP_2004_5_3_4_681_0 ER -
%0 Journal Article %A Lerner, Nicolas %T Transport equations with partially $BV$ velocities %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2004 %P 681-703 %V 3 %N 4 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2004_5_3_4_681_0/ %G en %F ASNSP_2004_5_3_4_681_0
Lerner, Nicolas. Transport equations with partially $BV$ velocities. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 3 (2004) no. 4, pp. 681-703. http://archive.numdam.org/item/ASNSP_2004_5_3_4_681_0/
[Ai] On vector fields as generators of flows: a counterexample to Nelson's conjecture, Ann. of Math. 107 (1978), 287-296. | MR | Zbl
,[Al] Rank one properties for derivatives of functions with bounded variations, Proc. Roy. Soc. Edinburgh sect. A 123 (1993), 239-274. | MR | Zbl
,[Am] Transport equations and Cauchy problem for vector fields, Invent. Math. 158 (2003), 227-260. | MR | Zbl
,[AFP] “Functions of bounded variations and free discontinuity problems”, Oxford Mathematical Monographs, 2000. | MR | Zbl
- - ,[Bo] Renormalized solutions to the Vlasov equation with coefficients of bounded variation, Arch. Ration. Mech. Anal. 157 (2001), 75-90. | MR | Zbl
,[BD] On two-dimensional Hamiltonian transport equations with continuous coefficients, Differential Integral Equations 14 (2001), 1015-1024. | MR | Zbl
- ,[BJ] One dimensional transport equations with discontinuous coefficients, Nonlinear Anal. 32 (1998), 891-933. | MR | Zbl
- ,[CP] On some analogy between different approaches to first-order PDE's with non smooth coefficients, Adv. Math. Sci. Appl. 6 (1996), 689-703. | MR | Zbl
- ,[ChL] Flot de champ de vecteurs non lipschitziens et équations de Navier-Stokes, J. Differential Equations 121 (1995), 314-328. | MR | Zbl
- ,[CL1] Uniqueness of continuous solutions for vector fields, Duke Math. J. 111 (2002), 357-384. | MR | Zbl
- ,[CL2] Uniqueness of solutions for a class of conormal vector fields, to appear in: “Geometric Analysis of PDE and Several Complex Variables”, 2003, S. Chanillo - P. Cordaro - N. Hanges - J. Hounie - A. Meziani (eds.). | MR | Zbl
- ,[CLR] Uniqueness and nonuniqueness for nonsmooth divergence free transport, Séminaire XEDP, Ecole Polytechnique (2003-04). | Numdam | MR | Zbl
- - ,[De] Non unicité des solutions bornées pour un champ de vecteurs en dehors d’un hyperplan., C.R. Math. Acad. Sci. Paris 337 (2003), 249-252. | MR | Zbl
,[DL] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (1989), 511-547. | MR | Zbl
- ,[Fe] “Geometric measure theory”, Grund. der Math. Wiss. 153, Springer-Verlag, 1969. | Zbl
,[LL] Renormalized solutions of some transport equations with partially velocities and applications, Ann. Mat. Pura Appl. 183 (2004), 97-130. | MR | Zbl
- ,[Li] Sur les équations différentielles ordinaires et les équations de transport, C.R. Acad. Sc. Paris, Série I, 326 (1998), 833-838. | MR | Zbl
,[Tr] “Topological vector spaces, distributions and kernels”, Pure & Appl. Math. Ser., Academic Press, 1967. | MR | Zbl
,[Vo] The space and quasi-linear equations, Math. USSR Sbornik 2 (1967), 225-267. | Zbl
,[Zi] “Weakly differentiable functions”, Graduate texts in mathematics, Springer-Verlag, Vol. 120, 1989. | MR | Zbl
,