We apply G. Prasad’s volume formula for the arithmetic quotients of semi-simple groups and Bruhat-Tits theory to study the covolumes of arithmetic subgroups of . As a result we prove that for any even dimension there exists a unique compact arithmetic hyperbolic -orbifold of the smallest volume. We give a formula for the Euler-Poincaré characteristic of the orbifolds and present an explicit description of their fundamental groups as the stabilizers of certain lattices in quadratic spaces. We also study hyperbolic -manifolds defined arithmetically and obtain a number theoretical characterization of the smallest compact arithmetic -manifold.
@article{ASNSP_2004_5_3_4_749_0, author = {Belolipetsky, Mikhail}, title = {On volumes of arithmetic quotients of $SO (1, n)$}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {749--770}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 3}, number = {4}, year = {2004}, mrnumber = {2124587}, zbl = {1170.11307}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2004_5_3_4_749_0/} }
TY - JOUR AU - Belolipetsky, Mikhail TI - On volumes of arithmetic quotients of $SO (1, n)$ JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2004 SP - 749 EP - 770 VL - 3 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2004_5_3_4_749_0/ LA - en ID - ASNSP_2004_5_3_4_749_0 ER -
%0 Journal Article %A Belolipetsky, Mikhail %T On volumes of arithmetic quotients of $SO (1, n)$ %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2004 %P 749-770 %V 3 %N 4 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2004_5_3_4_749_0/ %G en %F ASNSP_2004_5_3_4_749_0
Belolipetsky, Mikhail. On volumes of arithmetic quotients of $SO (1, n)$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 4, pp. 749-770. http://archive.numdam.org/item/ASNSP_2004_5_3_4_749_0/
[BG] The mass of unimodular lattices, J. Number Theory, to appear. | MR | Zbl
- ,[BP] Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups, Inst. Hautes Études Sci. Publ. Math. 69 (1989), 119-171; Addendum, ibid. 71 (1990), 173-177. | Numdam | MR
- ,[B] “Groups et Algèbres de Lie, chapitres IV, V et VI”, Paris, Hermann, 1968.
,[BT] Groupes réductifs sur un corps local, I; II, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5-251; 60 (1984), 5-184. | Numdam | MR | Zbl
- ,[BFPOD] Tables of number fields of low degree, ftp://megrez.math.u-bordeaux.fr/pub/numberfields/.
- - - - ,[CR] On the classification of maximal arithmetic subgroups of simply connected groups, Sb. Math. 188 (1997), 1385-1413. | MR | Zbl
- ,[CF] The smallest arithmetic hyperbolic three-orbifold, Invent. Math. 86 (1986), 507-527. | MR | Zbl
- ,[CFJR] The arithmetic hyperbolic 3-manifold of smallest volume, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 30 (2001), 1-40. | Numdam | MR | Zbl
- - - ,[D] A hyperbolic -manifold, Proc. Amer. Math. Soc. 93 (1985), 325-328. | MR | Zbl
,[EM] Constructing hyperbolic manifolds, In: “Computational and geometric aspects of modern algebra (Edinburgh, 1998)”, London Math. Soc. Lecture Note Ser., No. 275, Cambridge Univ. Press, Cambridge, 2000, pp. 78-86. | MR | Zbl
- ,[GHY] On an exact mass formula of Shimura, Duke Math. J. 107 (2001), 103-133. | MR | Zbl
- - ,[Gi] Real tunnelling geometries, Classical Quantum Gravity 15 (1998), 2605-2612. | MR | Zbl
,[Gr] On the motive of a reductive group, Invent. Math. 130 (1997), 287-313. | MR | Zbl
,[H] Halbeinfache Gruppenschemata ber Dedekindringen, Invent. Math. 4 (1967), 165-191. | MR | Zbl
,[K] Sign changes in Harmonic Analysis on Reductive Groups, Trans. Amer. Math. Soc. 278 (1983), 289-297. | MR | Zbl
,[Le] “The eightfold way. The beauty of Klein's quartic curve”, Math. Sci. Res. Inst. Publ. 35, Cambridge Univ. Press, Cambridge, 1999. | MR | Zbl
(ed.),[Lu] Lattice of minimal covolume in : a nonarchimedean analogue of Siegel’s theorem , J. Amer. Math. Soc. 3 (1990), 961-975. | MR | Zbl
,[Od] Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results, Sém. Théor. Nombres Bordeaux (2) 2 (1990), 119-141. | Numdam | MR | Zbl
,[Ono] On algebraic groups and discontinuous groups, Nagoya Math. J. 27 (1966), 279-322. | MR | Zbl
,[Pl] On the maximality problem of arithmetic groups, Soviet Math. Dokl. 12 (1971), 1431-1435. | MR | Zbl
,[P] Volumes of -arithmetic quotients of semi-simple groups, Inst. Hautes Études Sci. Publ. Math. 69 (1989), 91-117. | Numdam | MR | Zbl
,[RT] Volumes of integral congruence hyperbolic manifolds, J. Reine Angew. Math. 488 (1997), 55-78. | MR | Zbl
- ,[R] Die maximalen arithmetisch definierten Untergruppen zerfallender einfacher Gruppen, Math. Ann. 244 (1979), 219-231. | MR | Zbl
,[S] Cohomologie des groupes discrets, In: “Prospects in mathematics”, Ann. of Math. Studies, No. 70, Princeton Univ. Press, Princeton, 1971, pp. 77-169. | MR | Zbl
,[T] Reductive groups over local fields | MR | Zbl
,[V] On groups of unit elements of certain quadratic forms, Math. USSR-Sb. 16 (1972), 17-35. | Zbl
,[W] “Adèles and algebraic groups”, Birkhäuser, Boston, 1982. | MR | Zbl
,