We construct an intrinsic regular surface in the first Heisenberg group equipped wiht its Carnot-Carathéodory metric which has euclidean Hausdorff dimension . Moreover we prove that each intrinsic regular surface in this setting is a -dimensional topological manifold admitting a -Hölder continuous parameterization.
@article{ASNSP_2004_5_3_4_871_0, author = {Kirchheim, Bernd and Serra Cassano, Francesco}, title = {Rectifiability and parameterization of intrinsic regular surfaces in the {Heisenberg} group}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {871--896}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 3}, number = {4}, year = {2004}, mrnumber = {2124590}, zbl = {1170.28300}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2004_5_3_4_871_0/} }
TY - JOUR AU - Kirchheim, Bernd AU - Serra Cassano, Francesco TI - Rectifiability and parameterization of intrinsic regular surfaces in the Heisenberg group JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2004 SP - 871 EP - 896 VL - 3 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2004_5_3_4_871_0/ LA - en ID - ASNSP_2004_5_3_4_871_0 ER -
%0 Journal Article %A Kirchheim, Bernd %A Serra Cassano, Francesco %T Rectifiability and parameterization of intrinsic regular surfaces in the Heisenberg group %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2004 %P 871-896 %V 3 %N 4 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2004_5_3_4_871_0/ %G en %F ASNSP_2004_5_3_4_871_0
Kirchheim, Bernd; Serra Cassano, Francesco. Rectifiability and parameterization of intrinsic regular surfaces in the Heisenberg group. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 4, pp. 871-896. http://archive.numdam.org/item/ASNSP_2004_5_3_4_871_0/
[1] Rectifiable sets in metric and Banach spaces, Math. Ann. 318 (2000), 527-555. | MR | Zbl
- ,[2] Currents in metric spaces, Acta Math. 185 (2000), 1-80. | MR | Zbl
- ,[3] Weak differentiability of function on stratified groups, Math. Z. 245 (2003), 123-153. | MR | Zbl
- ,[4] Size of characteristic sets and functions with prescribed gradient, J. Reine Angew. Math. 564 (2003), 63-84. | MR | Zbl
,[5] Comparison of Hausdorff measures with respect to the Euclidean and the Heisenberg metric, Publ. Mat. 47 (2003), 237-259. | MR | Zbl
- - ,[6] Lifts of Lipischitz maps and horizontal fractals in the Heisenberg group, Preprint (2003).
- - ,[7] “The tangent space in subriemannian geometry", In: “Subriemannian Geometry", Progress in Mathematics 144, A. Bellaiche - J. Risler (eds.), Birkhauser Verlag, Basel, 1996. | MR | Zbl
,[8] Some results in surface measure in Calculus of Variations, Ann. Mat. Pura Appl. (4) 170 (1996), 329-357. | MR | Zbl
- - ,[9] Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 6 (1995), 37-44. | MR | Zbl
- ,[10] The geometric Sobolev embedding for vector fields and the isoperimetric inequality, Comm. Anal. Geom. 12 (1994), 203-215. | MR | Zbl
- - ,[11] Isopérimétrie pour les groupes et les variétés, Rev. Mat. Iberoamericana 9 (1993), 293-314. | MR | Zbl
- ,[12] Hausdorff lower -densities and rectifiability of sets in -space, Preprint.
,[13] Traces inequalities for Carnot-Carathèodory spaces and applications, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 27 (1998), 195-252. | Numdam | MR | Zbl
- - ,[14] “Fractured Fractals and Broken Dreams. Self-Similar Geometry through Metric and Measure”, Oxford University Press, 1997. | MR | Zbl
- ,[15] Reifenberg flat metric spaces, snowballs, and embeddings, Math. Ann. 315 (1999), 641-710. | MR | Zbl
- ,[16] Su una teoria generale della misura -dimensionale in uno spazio ad dimensioni, Ann.Mat.Pura Appl. (4) 36 (1954), 191-213. | MR | Zbl
,[17] Nuovi teoremi relativi alle misure -dimensionali in uno spazio ad dimensioni, Ricerche Mat. 4 (1955), 95-113. | MR | Zbl
,[18] “Frontiere orientate di misura minima e questioni collegate”, Scuola Normale Superiore, Pisa, 1972. | MR | Zbl
- - ,[19] Problema di Plateau generale e funzionali geodetici, Atti Sem. Mat. Fis. Univ. Modena 43 (1995), 285-292. | MR | Zbl
,[20] Un progetto di teoria unitaria delle correnti, forme differenziali, varietà ambientate in spazi metrici, funzioni a variazione limitata, Manuscript, (1995).
,[21] Un progetto di teoria delle correnti, forme differenziali e varietà non orientate in spazi metrici, In: “Variational Methods, Non Linear Analysys and Differential Equations in Honour of J. P. Cecconi”, (Genova 1993), M. Chicco et al. (eds.), ECIG, Genova, 67-71.
,[22] “Geometric Measure Theory”, Springer, 1969. | MR | Zbl
,[23] Sobolev and isoperimetric inequalities for degenerate metrics, Math. Ann. 300 (1994), 557-571. | MR | Zbl
- - ,[24] Meyers-Serrin Type Theorems and Relaxation of Variational Integrals Depending Vector Fields, Houston J. Math. 22 (1996), 859-889. | MR | Zbl
- - ,[25] Sur les ensembles des périmètre fini dans le groupe de Heisenberg, C.R. Acad. Sci. Paris Ser. I Math. 329 (1999), 183-188. | MR | Zbl
- - ,[26] Rectifiability and perimeter in the Heisenberg group, Math. Ann. 321 (2001), 479-531. | MR | Zbl
- - ,[27] Regular hypersurfaces, intrinsic perimeter and implicit function theorem in Carnot groups, Comm. Anal. Geom. 11 (2003) 909-944. | MR | Zbl
- - ,[28] Rectifiability and perimeter in step 2 groups, Proceedings of Equadiff10, 2001, Math. Bohem. 127 (2002), 219-228. | MR | Zbl
- - ,[29] On the structure of finite perimeter sets in step 2 Carnot groups, J. Geom. Anal. 13 (2003), 421-466. | MR | Zbl
- - ,[30] Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math. 49 (1996), 1081-1144. | MR | Zbl
- ,[31] “Carnot-Carathéodory spaces seen from within", In: “Subriemannian Geometry", Progress in Mathematics 144, A. Bellaiche and J. Risler (eds.), Birkhauser Verlag, Basel, 1996. | MR | Zbl
,[32] “Sobolev met Poincare”, Mem. AMS 145, 2000. | MR | Zbl
- ,[33] Sobolev classes of Banach space-valued functions and quasiconformal mappings, J. Anal. Math. 85 (2001), 87-139. | MR | Zbl
- - - ,[34] Rectifiable metric spaces: local structure and regularity of the Hausdorff measure, Proc. Amer. Math. Soc. 121 (1994), 113-123. | MR | Zbl
,[35] A counterexample to the metric differentiability, Proc. Edinburgh Math. Soc. 46 (2003), 221-227. | MR | Zbl
- ,[36] Foundation for the Theory of Quasiconformal Mappings on the Heisenberg Group, Adv. Math. 111 (1995), 1-87. | Zbl
- ,[37] Rectifiability of measures with locally uniform cube density, Proc. London Math. Soc. (3) 86 (2003), 153-249. | MR | Zbl
,[38] Differentiability and Area formula on stratified Lie groups, Houston J. Math. 27 (2001), 297-323. | MR | Zbl
,[39] Characteristic points, rectifiability and perimeter measure on stratified groups, Preprint (2003). | MR
,[40] Hausorff measures, Hölder continuous maps and self-similar fractals, Math. Proc. Cambridge Philos. Soc. 114 (1993), 37-42. | MR | Zbl
- ,[41] On The Parametrization of Self-Similar And Other Fractal Sets, Trans. Amer. Math. Soc. 128 (2000), 2641-2648. | MR | Zbl
- ,[42] “Geometry of sets and measures in Euclidean spaces”, Cambridge U.P., 1995. | MR | Zbl
,[43] On Carnot-Carathèodory metrics, J. Differential Geom. 21 (1985), 35-45. | MR | Zbl
,[44] Surface measures in Carnot-Carathéodory spaces, Calc. Var. Partial Differential Equations 13 (2001), 339-376. | MR | Zbl
- ,[45] Balls and metrics defined by vector fields I: Basic properties, Acta Math. 155 (1985), 103-147. | MR | Zbl
- - ,[46] Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. 129 (1989), 1-60. | MR | Zbl
,[47] Une inégalité isopérimétrique sur le groupe de Heisenberg, C.R. Acad. Sci. Paris 295 I (1982), 127-130. | MR | Zbl
,[48] Geometrie du Group d'Heisenberg, These pour le titre de Docteur 3ème cycle, Universite Paris VII, (1982).
,[49] A notion of rectifiability modelled on Carnot groups, Indiana Univ. Math. J. 53 (2004), 49-81. | MR | Zbl
,[50] On Besicovitch -problem, J. London Math. Soc. 45 (1992), 279-287. | Zbl
- ,[51] Solution of the Plateau problem for m-dimensional surfaces of varying topological type, Acta Math. 104 (1960), 198-223. | MR | Zbl
,[52] Chord- arc surfaces with small constant I, Adv. Math. 85 (1991), 198-223. | MR | Zbl
,[53] Chord- arc surfaces with small constant II, Adv. Math. 88 (1991), 170-189. | MR | Zbl
,[54] On the non existence of bilipschitz parameterization and geometric problems about weights, Rev. Mat. Iberoamericana 12 (1996), 337-410. | Zbl
,[55] Good metric spaces without good parameterization, Rev. Mat. Iberoamericana 12 (1996), 187-275. | MR | Zbl
,[56] “Lectures on Geometric Measure Theory”, Proc. Centre for Math. Anal., Australian Nat. Univ. 3, 1983. | MR | Zbl
,[57] “Harmonic Analysis”, Princeton University Press, 1993. | MR | Zbl
,[58] Self-similarity on nilpotent Lie groups, Contemp. Math. 140 (1992), 123-157. | MR | Zbl
,[59] Geometric conditions and existence of bi-lipschitz parameterizations, Duke Math. J. 77 (1995), 193-227. | MR | Zbl
,[60] Analysis on Lie Groups, J. Funct. Anal. 76 (1988), 346-410. | MR | Zbl
,[61] “Analysis and Geometry on Groups”, Cambridge University Press, Cambridge, 1992. | MR | Zbl
- - ,[62] -differentiability on Carnot groups in different topologies and related topics, Proc. on Analysis and Geometry, 603-670, Sobolev Institute Press, Novosibirsk, 2000. | MR | Zbl
,