Let be a closed polarized complex manifold of Kähler type. Let be the maximal compact subgroup of the automorphism group of . On the space of Kähler metrics that are invariant under and represent the cohomology class , we define a flow equation whose critical points are the extremal metrics, i.e. those that minimize the square of the -norm of the scalar curvature. We prove that the dynamical system in this space of metrics defined by the said flow does not have periodic orbits, and that its only fixed points are the extremal metrics. We prove local time-existence of the flow, and conclude that if the lifespan of the solution is finite, then the supremum of the norm of its curvature tensor must blow up as time approaches it. While doing this, we also prove that extremal solitons can only exist in the non-compact case, and that the range of the holomorphy potential of the scalar curvature is an interval independent of the metric chosen to represent . We end up with some conjectures concerning the plausible existence and convergence of global solutions under suitable geometric conditions.
@article{ASNSP_2005_5_4_2_187_0, author = {Simanca, Santiago R.}, title = {Heat flows for extremal {K\"ahler} metrics}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {187--217}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 4}, number = {2}, year = {2005}, mrnumber = {2163555}, zbl = {1170.53314}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2005_5_4_2_187_0/} }
TY - JOUR AU - Simanca, Santiago R. TI - Heat flows for extremal Kähler metrics JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2005 SP - 187 EP - 217 VL - 4 IS - 2 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2005_5_4_2_187_0/ LA - en ID - ASNSP_2005_5_4_2_187_0 ER -
%0 Journal Article %A Simanca, Santiago R. %T Heat flows for extremal Kähler metrics %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2005 %P 187-217 %V 4 %N 2 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2005_5_4_2_187_0/ %G en %F ASNSP_2005_5_4_2_187_0
Simanca, Santiago R. Heat flows for extremal Kähler metrics. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 2, pp. 187-217. http://archive.numdam.org/item/ASNSP_2005_5_4_2_187_0/
[1] Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982), 1-15. | MR | Zbl
,[2] Stability of vector bundles and extremal metrics, Invent. Math. 92 (1988), 403-407. | MR | Zbl
and ,[3] Extremal Kähler metrics, In: “Seminars on Differential Geometry”, S. T. Yau (ed.), Annals of Mathematics Studies, Princeton University Press, 1982, 259-290. | MR | Zbl
,[4] “Extremal Kähler Metrics II”, In: “Differential Geometry and Complex Analysis”, Chavel & Farkas (eds.), Springer-Verlag, 1985, 95-114. | MR | Zbl
,[5] Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds, Invent. Math. 81 (1985), 359-372. | MR | Zbl
,[6] Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160. | MR | Zbl
and ,[7] “Kähler-Einstein metrics and integral invariants”, Lect. Notes in Math. 1314, Springer-Verlag, 1987. | MR | Zbl
,[8] Bilinear forms and extremal Kähler vector fields associated with Kähler classes, Math. Ann. 301 (1995), 199-210. | MR | Zbl
and ,[9] Convexity properties of the moment mapping, Invent. Math. 67 (1982), 491-513. | MR | Zbl
and ,[10] The Ricci flow on surfaces, Contemp. Math., 71 (1988), 237-262. | MR | Zbl
,[11] Three manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), 255-306. | MR | Zbl
,[12] “Abstract differential equations and non-linear mixed problems”, Lezioni Fermiane, Scuola Norm. Sup. Pisa Cl. Sci., 1985. | MR | Zbl
,[13] On Kähler Surfaces of Constant Positive Scalar Curvature, J. Geom. Anal. 5 (1995), 115-127. | MR | Zbl
and ,[14] Extremal Kähler Metrics and Complex Deformation Theory, Geom. Func. Anal. 4 (1994), 298-336. | MR | Zbl
and ,[15] On the Kähler Classes of Extremal Metrics, In: “Geometry and Global Analysis”, First MSJ Intern. Res. Inst. Sendai, Japan, Kotake, Nishikawa and Schoen (eds.), 1993. | Zbl
and ,[16] A remark on extremal Kähler metrics, J. Differential Geom. 21 (1986), 73-77. | MR | Zbl
,[17] A K-energy characterization of extremal Kähler metrics, Proc. Amer. Math. Soc. 128 (2000), 1531-1535. | MR | Zbl
,[18] Strongly extremal Kähler metrics, Ann. Global Anal. Geom. 18 (2000), 29-46. | MR | Zbl
,[19] Precompactness of the Calabi Energy, Internat. J. Math. 7 (1996), 245-254. | MR | Zbl
,[20] Canonical Kähler classes, Asian J. Math. 5 (2001), 585-598. | MR | Zbl
and ,[21] The dynamics of the energy of a Kähler class, Commun. Math. Phys. 255 (2005), 363-389. | MR | Zbl
and ,[22] Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), 1-37. | MR | Zbl
,[23] On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I, Comm. Pure. Applied Math. 31 (1978), 339-411. | MR | Zbl
,