Using recent development in Poletsky theory of discs, we prove the following result: Let be two complex manifolds, let be a complex analytic space which possesses the Hartogs extension property, let (resp. ) be a non locally pluripolar subset of (resp. ). We show that every separately holomorphic mapping extends to a holomorphic mapping on such that on where (resp. is the plurisubharmonic measure of (resp. ) relative to (resp. ). Generalizations of this result for an -fold cross are also given.
@article{ASNSP_2005_5_4_2_219_0, author = {Nguy\^en, Vi\^et-Anh}, title = {A general version of the {Hartogs} extension theorem for separately holomorphic mappings between complex analytic spaces}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {219--254}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 4}, number = {2}, year = {2005}, mrnumber = {2163556}, zbl = {1170.32306}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2005_5_4_2_219_0/} }
TY - JOUR AU - Nguyên, Viêt-Anh TI - A general version of the Hartogs extension theorem for separately holomorphic mappings between complex analytic spaces JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2005 SP - 219 EP - 254 VL - 4 IS - 2 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2005_5_4_2_219_0/ LA - en ID - ASNSP_2005_5_4_2_219_0 ER -
%0 Journal Article %A Nguyên, Viêt-Anh %T A general version of the Hartogs extension theorem for separately holomorphic mappings between complex analytic spaces %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2005 %P 219-254 %V 4 %N 2 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2005_5_4_2_219_0/ %G en %F ASNSP_2005_5_4_2_219_0
Nguyên, Viêt-Anh. A general version of the Hartogs extension theorem for separately holomorphic mappings between complex analytic spaces. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 2, pp. 219-254. http://archive.numdam.org/item/ASNSP_2005_5_4_2_219_0/
[1] Propriété de stabilité de la fonction extrémale relative, preprint, (1999). | MR
et[2] Continuation of holomorphic mappings with values in a complex Lie group, Pacific J. Math. 47 (1973), 1-4. | MR | Zbl
, and ,[3] Une nouvelle version du théorème d'extension de Hartogs pour les applications séparément holomorphes entre espaces analytiques, Ann. Polon. Math. 76 (2001), 245-278. | MR | Zbl
et ,[4] The operator on complex spaces, Semin. P. Lelong - H. Skoda, Analyse, Années 1980/81, Lect. Notes Math. 919 (1982), 294-323. | MR | Zbl
,[5] A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-40. | MR | Zbl
and ,[6] Analytic discs method in complex analysis, Dissertationes Math. 402 (2002). | MR | Zbl
,[7] Product property of the relative extremal function, Bull. Polish Acad. Sci. Math. 45 (1997), 331-335. | MR | Zbl
and ,[8] Zur Theorie der analytischen Funktionen mehrer unabhängiger Veränder- lichen, insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiten, Math. Ann. 62 (1906), 1-88. | JFM | MR
,[9] On the equivalence between polar and globally polar sets for plurisubharmonic functions on , Ark. Mat. 16 (1978), 109-115. | MR | Zbl
,[10] The Hartogs phenomenon for holomorphically convex Kähler manifolds, Math. USSR-Izv. 29 (1997), 225-232. | Zbl
,[11] “Extension of Holomorphic Functions”, de Gruyter Expositions in Mathematics 34, Walter de Gruyter, 2000. | MR | Zbl
and ,[12] An extension theorem for separately holomorphic functions with analytic singularities, Ann. Polon Math. 80 (2003), 143-161. | EuDML | MR | Zbl
and ,[13] An extension theorem for separately holomorphic functions with pluripolar singularities, Trans. Amer. Math. Soc. 355 (2003), 1251-1267. | MR | Zbl
and ,[14] An extension theorem for separately meromorphic functions with pluripolar singularities, Kyushu J. of Math., 57 (2003), 291-302. | MR | Zbl
and ,[15] “Pluripotential theory”, London Mathematical society monographs, Oxford Univ. Press., 6, 1991. | MR | Zbl
,[16] Locally bounded holomorphic functions and the mixed Hartogs theorem, Southeast Asian Bull. Math. 23 (1999), 643-655. | MR | Zbl
and ,[17] Plurisubharmonic functions and analytic discs on manifolds, J. Reine Angew. Math. 501 (1998), 1-39. | MR | Zbl
and ,[18] Separate analyticity and related subjects, Vietnam J. Math. 25 (1997), 81-90. | MR | Zbl
,[19] Note on doubly orthogonal system of Bergman, In: “Linear Topological Spaces and Complex Analysis” 3 (1997), 157-159. | MR | Zbl
,[20] Fonctions plurisousharmoniques et analytiques dans les espaces vectoriels topologiques, Ann. Inst. Fourier Grenoble 19 (1969), 419-493. | EuDML | Numdam | MR | Zbl
,[21] Fonctions plurisousharmoniques extrémales et systèmes doublement orthogonaux de fonctions analytiques, Bull. Sci. Math. 115 (1991), 235-244. | MR | Zbl
and ,[22] Familles de polynômes presque partout bornées, Bull. Sci. Math. 107 (1983), 81-89. | MR | Zbl
et ,[23] Une extension du théorème de Hartogs sur les fonctions séparément analytiques, In: “Analyse Complexe Multivariable, Récents Développements”, A. Meril (ed.), EditEl, Rende, 1991, 183-194. | MR | Zbl
et ,[24] Systèmes doublement orthogonaux de fonctions holomorphes et applications, Banach Center Publ. 31, Inst. Math., Polish Acad. Sci. (1995), 281-297. | EuDML | MR | Zbl
et ,[25] Extension of separately holomorphic functions-a survey 1899-2001, Ann. Polon. Math. 80 (2003), 21-36. | EuDML | MR | Zbl
,[26] Plurisubharmonic functions as solutions of variational problems, In: “Several complex variables and complex geometry”, Proc. Summer Res. Inst., Santa Cruz/CA (USA) 1989, Proc. Symp. Pure Math. 52, Part 1 (1991), 163-171. | MR | Zbl
,[27] Holomorphic currents, Indiana Univ. Math. J. 42 (1993), 85-144. | MR | Zbl
,[28] A boundary cross theorem for separately holomorphic functions, Ann. Polon. Math. 84 (2004), 237-271. | EuDML | MR | Zbl
and ,[29] Generalization of Drużkowski's and Gonchar's “Edge-of-the-Wedge” Theorems, preprint 2004, available at arXiv:math.CV/0503326.
and ,[30] Envelope of holomorphy for boundary cross sets, preprint 2005. | MR | Zbl
and ,[31] “Potential theory in the complex plane”, London Mathematical Society Student Texts 28, Cambridge: Univ. Press., 1995. | MR | Zbl
,[32] Poletsky theory of disks on holomorphic manifolds, Indiana Univ. Math. J. 52 (2003), 157-169. | MR | Zbl
,[33] Plurisubharmonic measures and capacities on complex manifolds, Russian Math. Surveys 36 (1981), 61-119. | MR | Zbl
,[34] Extension of holomorphic maps into Hermitian manifolds, Math. Ann. 194 (1971), 249-258. | EuDML | MR | Zbl
,[35] Notes on the functions of two complex variables, J. Gakugei Tokushima Univ. 8 (1957), 1-3. | MR | Zbl
,[36] Analyticity and separate analyticity of functions defined on lower dimensional subsets of , Zeszyty Nauk. Univ. Jagiello. Prace Mat. Zeszyt 13 (1969), 53-70. | MR | Zbl
,[37] Separately analytic functions and envelopes of holomorphy of some lower dimensional subsets of , Ann. Polon. Math. 22 (1970), 145-171. | EuDML | MR | Zbl
,[38] Sur une certaine condition sous laquelle une fonction de plusieurs variables complexes est holomorphe, Publ. Res. Inst. Math. Sci. 2 (1967), 383-396. | MR | Zbl
,[39] Separately analytic functions, generalizations of the Hartogs theorem and envelopes of holomorphy, Math. USSR-Sb. 30 (1976), 51-67. | Zbl
,[40] Comportement asymptotique des systèmes doublement orthogonaux de Bergman: Une approche élémentaire, Vietnam J. Math. 30 (2002), 177-188. | MR | Zbl
,[41] Normal families of holomorphic mappings, Acta Math. 119 (1967), 193-233. | MR | Zbl
,