When and the -harmonic measure on the boundary of the half plane is not additive on null sets. In fact, there are finitely many sets , ,..., in , of -harmonic measure zero, such that .
@article{ASNSP_2005_5_4_2_357_0, author = {Llorente, Jos\'e G. and Manfredi, Juan J. and Wu, Jang-Mei}, title = {$p$-harmonic measure is not additive on null sets}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {357--373}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 4}, number = {2}, year = {2005}, mrnumber = {2163560}, zbl = {1105.31002}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2005_5_4_2_357_0/} }
TY - JOUR AU - Llorente, José G. AU - Manfredi, Juan J. AU - Wu, Jang-Mei TI - $p$-harmonic measure is not additive on null sets JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2005 SP - 357 EP - 373 VL - 4 IS - 2 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2005_5_4_2_357_0/ LA - en ID - ASNSP_2005_5_4_2_357_0 ER -
%0 Journal Article %A Llorente, José G. %A Manfredi, Juan J. %A Wu, Jang-Mei %T $p$-harmonic measure is not additive on null sets %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2005 %P 357-373 %V 4 %N 2 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2005_5_4_2_357_0/ %G en %F ASNSP_2005_5_4_2_357_0
Llorente, José G.; Manfredi, Juan J.; Wu, Jang-Mei. $p$-harmonic measure is not additive on null sets. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 2, pp. 357-373. http://archive.numdam.org/item/ASNSP_2005_5_4_2_357_0/
[ARY] Estimates for nonlinear harmonic “measures” on trees, Michigan Math. J. 48 (2001), 47-64. | MR | Zbl
, and ,[AM] On null sets of -harmonic measure, In: “Partial Differential Equations with minimal smoothness and applications”, Chicago, IL 1990, B. Dahlberg et al. (eds.), Springer Verlag, New York, 1992, 33-36. | MR | Zbl
and ,[B] Comparison of -harmonic measures of subsets of the unit circle, St. Petersburg Math. J. 9 (1998), 543-551. | MR | Zbl
,[BBS] A problem of Baernstein on the equality of the -harmonic measure of a set and its closure, Proc. AMS, to appear. | Zbl
, and ,[DB] -local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1983), 827-850. | MR | Zbl
,[CFPR] On harmonic functions on trees, Potential Anal. 15 (2001), 1999-244. | MR | Zbl
, , and ,[FGMS] Fatou theorems for some nonlinear elliptic equations, Rev. Mat. Iberoamericana 4 (1988), 227-251. | MR | Zbl
, , and ,[GLM] -harmonic measure in space, Ann. Acad. Sci. Fenn. Math. Diss. 7 (1982), 233-247 | MR | Zbl
, and ,[HM] Estimates for -harmonic measures and Øksendal’s theorem for quasiconformal mappings, Indiana Univ. Math. J. 36 (1987), 659-683. | MR | Zbl
and ,[HKM] “Nonlinear potential theory of degenerate elliptic equations”, Clarendon Press, New York, 1993. | MR | Zbl
, and ,[KW] Fatou theorem of -harmonic functions on trees, Ann. Probab. 28 (2000), 1138-1148. | MR | Zbl
and ,[KLW] Nonlinear harmonic measures on trees, Ann. Acad. Sci. Fenn. Math. Diss. 28 (2003), 279-302. | EuDML | MR | Zbl
, and ,[K] Invariant sets for -harmonic measure, Ann. Acad. Sci. Fenn. Math. Diss. 20 (1995), 433-436. | EuDML | MR | Zbl
,[L1] Regularity of the derivatives of solutions to certain elliptic equations, Indiana Univ. Math. J. 32 (1983), 849-856. | MR | Zbl
,[L2] “Note on a theorem of Wolff”, Holomorphic Functions and Moduli, Vol. 1, Berkeley, CA, 1986, D. Drasin et al. (eds.), Math. Sci. Res. Inst. Publ., Vol. 10, Springer-Verlag, 1988, 93-100. | MR | Zbl
,[MW] On the Fatou theorem for -harmonic functions, Comm. Partial Differential Equations 13 (1988), 651-658. | MR | Zbl
and ,[M1] Potential theoretic aspects of nonlinear elliptic partial differential equations, Bericht Report 44, University of Jyväskylä, Jyväskylä, 1989. | MR | Zbl
,[M2] Sets of zero elliptic harmonic measures, Ann. Acad. Sci. Fenn. Math. Diss. 14 (1989), 47-55. | MR | Zbl
,[Ma] On the continuity at a boundary point of solutions of quasi-linear elliptic equations (English translation), Vestnik Leningrad Univ. Math. 3(1976), 225-242. Original in Vestnik Leningrad. Univ. 25 (1970), 42-45 (in Russian). | MR | Zbl
,[Wo1] Gap series constructions for the -Laplacian, Preprint, 1984. | MR
,[Wo2] Generalizations of Fatou's theorem, Proceedings of the International Congres of Mathematics, Berkeley, CA, 1986, Vol. 2, Amer. Math. Soc., Providence, RI, 1987, 990-993. | MR | Zbl
,[W] Null sets for doubling and dyadic doubling measures, Ann. Acad. Sci. Fenn. Math. 18 (1993), 77-91. | EuDML | MR | Zbl
,