Let and be hyperkähler manifolds. We study stationary quaternionic maps between and . We first show that if there are no holomorphic 2-spheres in the target then any sequence of stationary quaternionic maps with bounded energy subconverges to a stationary quaternionic map strongly in . We then find that certain tangent maps of quaternionic maps give rise to an interesting minimal 2-sphere. At last we construct a stationary quaternionic map with a codimension-3 singular set by using the embedded minimal in the hyperkähler surface studied by Atiyah-Hitchin.
@article{ASNSP_2005_5_4_3_375_0, author = {Chen, Jingyi and Li, Jiayu}, title = {Quaternionic maps and minimal surfaces}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {375--388}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 4}, number = {3}, year = {2005}, mrnumber = {2185957}, zbl = {1170.53312}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2005_5_4_3_375_0/} }
TY - JOUR AU - Chen, Jingyi AU - Li, Jiayu TI - Quaternionic maps and minimal surfaces JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2005 SP - 375 EP - 388 VL - 4 IS - 3 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2005_5_4_3_375_0/ LA - en ID - ASNSP_2005_5_4_3_375_0 ER -
%0 Journal Article %A Chen, Jingyi %A Li, Jiayu %T Quaternionic maps and minimal surfaces %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2005 %P 375-388 %V 4 %N 3 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2005_5_4_3_375_0/ %G en %F ASNSP_2005_5_4_3_375_0
Chen, Jingyi; Li, Jiayu. Quaternionic maps and minimal surfaces. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 4 (2005) no. 3, pp. 375-388. http://archive.numdam.org/item/ASNSP_2005_5_4_3_375_0/
[1] A twistor construction of Kähler submanifolds of a quaternionic Kähler manifold, Ann. Mat. Pura Appl. 184 (2005), 53-74. | MR
and ,[2] Topological Sigma-Models in Four Dimensions and Triholomorphic Maps, Nucl. Phys. B416 (1994), 255-300. | MR | Zbl
and ,[3] “The geometry and dynamics of magnetic monopoles”, Princeton University Press 1988. | MR | Zbl
and ,[4] On the singular set of stationary harmonic maps, Manuscripta Math. 78 (1993), 417-443. | MR | Zbl
,[5] Complex anti-self-dual connections on product of Calabi-Yau surfaces and triholomorphic curves, Comm. Math. Phys. 201 (1999), 201-247. | MR | Zbl
,[6] Quaternionic maps between hyperkähler manifolds, J. Differential Geom. 55 (2000), 355-384. | MR | Zbl
and ,[7] Mean curvature flow of surface in -manifolds, Adv. Math. 163 (2001), 287-309. | MR | Zbl
and ,[8] Minimal surfaces in Riemannian 4-manifolds, Geom. Funct. Anal. 7 (1997), 873-916. | MR | Zbl
and ,[9] Minimal surfaces by moving frames, Amer. J. Math. 105 (1983), 59-83. | MR | Zbl
and ,[10] Gauge theory in higher dimensions, In: “The Geometric Universe: Science, Geometry and the work of Roger Penrose”, S. A. Huggett et al. (eds), Oxford Univ. Press, 1998, pp. 31-47. | MR | Zbl
and ,[11] Partial regularity for stationary harmonic maps, Arch. Rat. Mech. Anal. 116 (1991), 101-112. | Zbl
,[12] Twistorial construction of harmonic maps of surfaces into four-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12 (1985), 589-640. | Numdam | MR | Zbl
and ,[13] Supersymmetric Yang-Mills, octonionic instantons and triholomorphic curves, Nucl. Phys. B521 (1998), 419-443. | MR | Zbl
, and ,[14] Hypercomplex algebraic geometry, Quart. J. Math. 49 (1998), 129-162. | MR | Zbl
,[15] Gradient estimates and blow-up analysis for stationary harmonic maps, Ann. Math. 149 (1999), 785-829. | MR | Zbl
,[16] A blow-up formula for stationary harmonic maps, Internat. Math. Res. Notices 14 (1998), 735-755. | MR | Zbl
and ,[17] Yang-Mills fields on quaternionic spaces. Nonlinearity 1 (1988), 517-530. | MR | Zbl
and ,[18] -instantons on and stable vector bundles. Math. Z. 232 (1999), 721-737. | MR | Zbl
and ,[19] Duality and Yang-Mills fields on quaternionic Kähler manifolds. J. Math. Phys. 32 (1991), 1263-1268. | MR | Zbl
and ,[20] f-structures, f-twistor spaces and harmonic maps, In: “Geometry Seminar ‘Luigi Bianchi', II - 1984”, E. Vesentini (ed.), Lect. Nothes Math. 1164, Springer, Berlin, 1985, 85-159. | MR | Zbl
,[21] Harmonic and holomorphic maps, In: “Geometry Seminar ‘Luigi Bianchi', II - 1984”, E. Vesentini (ed.), Lect. Notes Math. 1164, Springer, Berlin, 1985, 161-224. | MR | Zbl
,[22] Analytic aspects of harmonic maps, In: “Seminar on nonlinear Partial Differential equations”, S. S. Chern (ed.), M.S.R.I. Publications 2, Springer-Verlag, New-York, 1984, 321-358. | MR | Zbl
,[23] Rectifiability of the singular set of energy minimizing maps, Calc. Var. Partial Differential Equations 3 (1995), 1-65. | MR | Zbl
,[24] Quaternionic Kähler Geometry and the Fundamental 4-form, In: “Proc. Curvature Geom. workshop”, C. T. J. Dodson (ed.), ULDM Publications Lancaster, 1989, 165-173. | MR | Zbl
,[25] The existence of minimal immersions of -spheres, Ann. of Math. (2) 113 (1981), 1-24. | MR | Zbl
and ,[26] A Dolbeault-type double complex on quaternionic manifolds, Asian J. Math. 6 (2002), 253-275. | MR | Zbl
,