We investigate a weighted version of Hausdorff dimension introduced by V. Afraimovich, where the weights are determined by recurrence times. We do this for an ergodic invariant measure with positive entropy of a piecewise monotonic transformation on the interval , giving first a local result and proving then a formula for the dimension of the measure in terms of entropy and characteristic exponent. This is later used to give a relation between the dimension of a closed invariant subset and a pressure function.
@article{ASNSP_2005_5_4_3_439_0, author = {Hofbauer, Franz}, title = {The recurrence dimension for piecewise monotonic maps of the interval}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {439--449}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 4}, number = {3}, year = {2005}, mrnumber = {2185864}, zbl = {1170.37316}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2005_5_4_3_439_0/} }
TY - JOUR AU - Hofbauer, Franz TI - The recurrence dimension for piecewise monotonic maps of the interval JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2005 SP - 439 EP - 449 VL - 4 IS - 3 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2005_5_4_3_439_0/ LA - en ID - ASNSP_2005_5_4_3_439_0 ER -
%0 Journal Article %A Hofbauer, Franz %T The recurrence dimension for piecewise monotonic maps of the interval %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2005 %P 439-449 %V 4 %N 3 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2005_5_4_3_439_0/ %G en %F ASNSP_2005_5_4_3_439_0
Hofbauer, Franz. The recurrence dimension for piecewise monotonic maps of the interval. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 3, pp. 439-449. http://archive.numdam.org/item/ASNSP_2005_5_4_3_439_0/
[1] Pesins dimension for Poincaré recurrences, Chaos 7 (1997), 12-20. | MR | Zbl
,[2] Dimension-like characteristics of invariant sets in dynamical systems, In: “Dynamics and randomness”, A. Maass, S. Martinez and J. San Martin (eds.), Kluwer Academic Publishers, Dordrecht, 2002, pp. 1-30. | MR | Zbl
and ,[3] Local dimensions for Poincaré recurrence, Electron. Res. Announc. Amer. Math. Soc. 6 (2000), 64-74. | MR | Zbl
, and ,[4] On pointwise dimensions and spectra of measures, C. R. Acad. Sci. Paris Ser. I Math. 333 (2001), 719-723. | MR | Zbl
and ,[5] Piecewise invertible dynamical systems, Probab. Theory Related Fields 72 (1986), 359-386. | MR | Zbl
,[6] An inequality for the Ljapunov exponent of an ergodic invariant measure for a piecewise monotonic map on the interval, In: “Lyapunov exponents”, Proceedings, Oberwolfach, 1990, Lecture Notes in Mathematics 1486, L. Arnold, H. Crauel and J.-P. Eckmann (eds.), Springer, Berlin, 1991, pp. 227-231. | MR | Zbl
,[7] Local dimension for piecewise monotonic maps on the interval, Ergod. Theory Dynam. Systems 15 (1995), 1119-1142. | MR | Zbl
,[8] The Hausdorff dimension of an ergodic invariant measure for a piecewise monotonic map of the interval, Canad. J. Math. 35 (1992), 84-98. | MR | Zbl
and ,[9] Multifractal dimensions for invariant subsets of piecewise monotonic interval maps, Fund. Math. 176 (2003), 209-232. | MR | Zbl
, and ,[10] Markov extensions, zeta functions, and Fredholm theory for piecewise invertible dynamical systems, Trans. Amer. Math. Soc. 314 (1989), 433-497. | MR | Zbl
,[11] Lifting measures to Markov extensions, Monatsh. Math. 108 (1989), 183-200. | MR | Zbl
,[12] “One-dimensional dynamics”, Springer-Verlag Berlin-Heidelberg-New York, 1993. | MR | Zbl
and ,[13] A multifractal formalism, Adv. Math. 116 (1995), 82-196. | MR | Zbl
,[14] “Dimension theory in dynamical systems: Contemporary views and applications”, The University of Chicago Press Chicago and London, 1997. | MR | Zbl
,[15] Recurrence, dimensions and Lyapunov exponents, J. Statist. Phys. 106 (2002), 623-634. | MR | Zbl
, and ,[16] Recurrence and Lyapunov exponents, Moscow Math. J. 3 (2003), 189-203. | MR | Zbl
, and ,[17] “An introduction to ergodic theory”, Springer-Verlag Berlin-Heidelberg-New York, 1982. | MR | Zbl
,