We prove some Hardy-type inequalities related to quasilinear second-order degenerate elliptic differential operators . If is a positive weight such that , then the Hardy-type inequalityholds. We find an explicit value of the constant involved, which, in most cases, results optimal. As particular case we derive Hardy inequalities for subelliptic operators on Carnot Groups.
@article{ASNSP_2005_5_4_3_451_0, author = {D{\textquoteright}Ambrosio, Lorenzo}, title = {Hardy-type inequalities related to degenerate elliptic differential operators}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {451--486}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 4}, number = {3}, year = {2005}, mrnumber = {2185865}, zbl = {1170.35372}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2005_5_4_3_451_0/} }
TY - JOUR AU - D’Ambrosio, Lorenzo TI - Hardy-type inequalities related to degenerate elliptic differential operators JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2005 SP - 451 EP - 486 VL - 4 IS - 3 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2005_5_4_3_451_0/ LA - en ID - ASNSP_2005_5_4_3_451_0 ER -
%0 Journal Article %A D’Ambrosio, Lorenzo %T Hardy-type inequalities related to degenerate elliptic differential operators %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2005 %P 451-486 %V 4 %N 3 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2005_5_4_3_451_0/ %G en %F ASNSP_2005_5_4_3_451_0
D’Ambrosio, Lorenzo. Hardy-type inequalities related to degenerate elliptic differential operators. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 3, pp. 451-486. http://archive.numdam.org/item/ASNSP_2005_5_4_3_451_0/
[1] Singular solutions, homogeneous norms, and quasiconformal mappings in Carnot groups, Math. Ann. 324 (2002), 159-186. | MR | Zbl
, and ,[2] Polar coordinates in Carnot groups, Math. Z. 241 (2002), 697-730. | MR | Zbl
and ,[3] The heat equation with a singular potential, Trans. Amer. Math. Soc. 284 (1984), 121-139. | MR | Zbl
and ,[4] Series expansion for Hardy inequalities, Indiana Univ. Math. J. 52 (2003), 171-190. | MR | Zbl
, and ,[5] A unified approach to improved Hardy inequalities with best constants, Trans. Amer. Math. Soc. 356 (2004), 2169-2196. | MR | Zbl
, and ,[6] The P-Laplace Equation on a class of Grushin-type Spaces, Proc. Amer. Math. Soc., to appear. | MR | Zbl
and ,[7] A Note on Lifting of Carnot groups, Rev. Mat. Iberoamericana. To appear. | EuDML | MR | Zbl
and ,[8] Nonlinear Liouville theorems for some critical problems on H-type groups, J. Funct. Anal. 207 (2004), 161-215. | MR | Zbl
and ,[9] Some simple nonlinear PDE's without solutions, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 (1998), 223-262. | EuDML | MR | Zbl
and ,[10] Hardy's inequalities revisited, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), 217-237 (1998). Dedicated to Ennio De Giorgi. | Numdam | MR | Zbl
and ,[11] Extremal functions for Hardy's inequality with weight, J. Funct. Anal. 171 (2000), 177-191. | MR | Zbl
, and ,[12] Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid 10 (1997), 443-469. | MR | Zbl
and ,[13] Regularity for quasilinear equations and -quasiconformal maps in Carnot groups, Math. Ann. 313 (1999), no. 2, 263-295. | MR | Zbl
,[14] An embedding theorem and the Harnack inequality for nonlinear subelliptic equations, Comm. Partial Differential Equations 18 (1993), 1765-1794. | MR | Zbl
, and ,[15] Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations, Amer. J. Math. 118 (1996), 1153-1196. | MR | Zbl
, and ,[16] Inégalités de Hardy sur les variétés riemanniennes non-compactes, J. Math. Pures Appl. (9) 76 (1997), 883-891. | MR | Zbl
,[17] Subadditivity of homogeneous norms on certain nilpotent Lie groups, Proc. Amer. Math. Soc. 83 (1981), 69-70. | MR | Zbl
,[18] Hardy inequalities related to Grushin type operators, Proc. Amer. Math. Soc. 132 (2004), 725-734. | MR | Zbl
,[19] Some Hardy Inequalities on the Heisenberg Group, Differential Equations 40 (2004), 552-564. | MR | Zbl
,[20] Nonlinear Liouville theorems for Grushin and Tricomi operators, J. Differential Equations 193 (2003), 511-541. | MR | Zbl
and ,[21] Representation Formulae and Inequalities for Solutions od a Class of Second Order Partial Differential Equations, Trans. Amer. Math. Soc. (2005), PII S 0002-9947(05)03717-7. | MR | Zbl
, and ,[22] Notions of convexity in Carnot groups, Comm. Anal. Geom. 11 (2003), 263-341. | MR | Zbl
, and ,[23] The Hardy constant, Q. J. Math. (2) 46 (1995), 417-431. | MR | Zbl
,[24] Explicit constants for Rellich inequalities in , Math. Z. 227 (1998), 511-523. | MR | Zbl
and ,[25] Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161-207. | MR | Zbl
,[26] “ Hardy spaces on homogeneous groups”, volume 28 of Mathematical Notes, Princeton University Press, Princeton, N.J., 1982. | MR | Zbl
and ,[27] Capacités, mouvement brownien et problème de l'épine de Lebesgue sur les groupes de Lie nilpotents, In: “Probability measures on groups”, Oberwolfach, 1981, volume 928 of Lecture Notes in Math., Springer, Berlin, pp. 96-120. | MR | Zbl
,[28] Hardy inequalities and some critical elliptic and parabolic problems, J. Differential Equations 144 (1998), 441-476. | MR | Zbl
and ,[29] Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation, Ann. Inst. Fourier (Grenoble) 40 (1990), 313-356. | Numdam | MR | Zbl
and ,[30] Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg type, Duke Math. J. 106 (2001), 411-448. | MR | Zbl
and ,[31] Hardy inequalities with optimal constants and remainder terms, Trans. Amer. Math. Soc. 356 (2004), 2149-2168. | MR | Zbl
, and ,[32] On a degenerate heat equation with a singular potential, J. Funct. Anal. 186 (2001), 342-359. | MR | Zbl
and ,[33] A fundamental solution for a nonelliptic partial differential operator, Canad. J. Math. 31 (1979), 1107-1120. | MR | Zbl
,[34] Calculus on Carnot groups, In: “Fall School in Analysis” (Jyväskylä, 1994), volume 68 of Report . Univ. Jyväskylä, Jyväskylä, pp. 1-31. | MR | Zbl
,[35] Quasiregular maps on Carnot groups, J. Geom. Anal. 7 (1997), 109-148. | MR | Zbl
and ,[36] Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc. 258 (1980), 147-153. | MR | Zbl
,[37] Nonlinear degenerate parabolic equations for Baouendi-Grushin operators (2004), preprint. | MR
,[38] Convex functions on the Heisenberg group, Calc. Var. Partial Differential Equations 19 (2004), 1-22. | MR | Zbl
, and ,[39] Lipschitz continuity, Aleksandrov theorem and characterizations for H-convex function (2003). URL http://cvgmt.sns.it/papers/mag03a, Preprint. | MR
,[40] On the best constant for Hardy’s inequality in , Trans. Amer. Math. Soc. 350 (1998), 3237-3255. | MR | Zbl
, and ,[41] The best possible constant in generalized Hardy’s inequality for convex domain in , Nonlinear Anal. 28 (1997), 1601-1610. | MR | Zbl
and ,[42] The sharp constant in Hardy's inequality for complement of bounded domain, Nonlinear Anal. 33 (1998), 105-120. | MR | Zbl
and ,[43] “Sobolev spaces”, Springer Series in Soviet Mathematics. Springer-Verlag, Berlin 1985. Translated from the Russian by T. O. Shaposhnikova. | MR
,[44] A simple approach to Hardy inequalities, Mat. Zametki 67 (2000), 563-572. | MR | Zbl
,[45] Nonexistence of weak solutions for some degenerate elliptic and parabolic problems on , J. Evol. Equ. 1 (2001), 189-220. | MR | Zbl
and ,[46] A priori estimates and blow-up of solutions of nonlinear partial differential equations and inequalities, Proc. Steklov Inst. Math. 234 (2001), 1-362. | MR | Zbl
and ,[47] Hardy-type and Rellich type inequalities on the Heisenberg group, Proc. Amer. Math. Soc. 129 (2001), 3623-3630. | MR | Zbl
, and ,[48] Remarks on a Hardy-Sobolev inequality, C. R. Math. Acad. Sci. Paris 336 (2003), 811-815. | MR | Zbl
, and ,[49] The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal. 173 (2000), 103-153. | MR | Zbl
and ,[50] Hardy-type inequalities and Pohozaev-type identities for a class of -degenerate subelliptic operators and applications, Nonlinear Anal. 54 (2003), 165-186. | MR | Zbl
and ,