We provide a geometric rigidity estimate à la Friesecke-James-Müller for conformal matrices. Namely, we replace by an arbitrary compact set of conformal matrices, bounded away from and invariant under , and rigid motions by Möbius transformations.
@article{ASNSP_2005_5_4_4_557_0, author = {Faraco, Daniel and Zhong, Xiao}, title = {Geometric rigidity of conformal matrices}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {557--585}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 4}, number = {4}, year = {2005}, mrnumber = {2207734}, zbl = {1170.30308}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2005_5_4_4_557_0/} }
TY - JOUR AU - Faraco, Daniel AU - Zhong, Xiao TI - Geometric rigidity of conformal matrices JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2005 SP - 557 EP - 585 VL - 4 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2005_5_4_4_557_0/ LA - en ID - ASNSP_2005_5_4_4_557_0 ER -
%0 Journal Article %A Faraco, Daniel %A Zhong, Xiao %T Geometric rigidity of conformal matrices %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2005 %P 557-585 %V 4 %N 4 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2005_5_4_4_557_0/ %G en %F ASNSP_2005_5_4_4_557_0
Faraco, Daniel; Zhong, Xiao. Geometric rigidity of conformal matrices. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 4, pp. 557-585. http://archive.numdam.org/item/ASNSP_2005_5_4_4_557_0/
[1] “The Geometry of Discrete Groups”, Graduate Texts in Mathematics, Vol. 91, Springer-Verlag, New York, 1995. Corrected reprint of the 1983 original. | MR | Zbl
,[2] Rigidity estimate for two incompatible wells, Calc. Var. Partial Differential Equations 19 (2004), 379-390. | MR | Zbl
and ,[3] Linearized elasticity as -limit of finite elasticity. Calculus of variations, nonsmooth analysis and related topics, Set-Valued Anal. 10 (2002), 165-183. | MR | Zbl
, and ,[4] Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) 3 (1957), 25-43. | MR | Zbl
,[5] Rigidity of sets of matrices, In: “Future Trends in Geometric Function Theory”, Rep. Univ. Jyväskylä Dep. Math. Stat., Vol. 92, Univ. Jyväskylä, Jyväskylä, 2003, 77-83. | MR | Zbl
,[6] Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence, C. R. Math. Acad. Sci. Paris 336 (2003), 697-702. | MR | Zbl
, , and ,[7] Rigorous derivation of nonlinear plate theory and geometric rigidity, C. R. Math. Acad. Sci. Paris 334 (2002), 173-178. | MR | Zbl
, and ,[8] A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math. 55 (2002), 1461-1506. | MR | Zbl
, and ,[9] Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103 (1962), 353-393. | MR | Zbl
,[10] “Direct Methods in the Calculus of Variations”, World Scientific Publishing Co. Inc., River Edge, NJ, 2003. | MR | Zbl
,[11] “Nonlinear Potential Theory of Degenerate Elliptic Equations”, Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 1993. Oxford Science Publications. | MR | Zbl
, and ,[12] Mappings of finite distortion: Reverse inequalities for the , Preprint 310 at the University of Jyväskylä (2004). | MR
, and ,[13] -harmonic tensors and quasiregular mappings, Ann. of Math. (2) 136 (1992), 589-624. | MR | Zbl
,[14] “Geometric Function Theory and Non-Linear Analysis”, Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 2001. | MR | Zbl
and ,[15] Rotation and strain, Comm. Pure Appl. Math. 14 (1961), 391-413. | MR | Zbl
,[16] Théorème sur l’équation , J. Math. Pures Appl. 15 (1850).
,[17] Derivation of the nonlinear bending-torsion theory for inextensible rods by -convergence, Calc. Var. Partial Differential Equations 18 (2003), 287-305. | MR | Zbl
and ,[18] A nonlinear model for inextensible rods as a low energy -limit of three-dimensional nonlinear elasticity, Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004), 271-293. | Numdam | MR | Zbl
and ,[19] Liouville's conformal mapping theorem under minimal regularity hypotheses, Sibirsk. Mat. Zh. 8 (1967), 835-840. | MR | Zbl
,[20] Estimates for certain differential operators with finite-dimensional kernel, Sibirsk. Mat. Zh. 11 (1970), 414-428. | MR | Zbl
,[21] “Stability Theorems in Geometry and Analysis”, Mathematics and its Applications, Vol. 304, Kluwer Academic Publishers Group, Dordrecht, 1994. Translated from the 1982 Russian original by N. S. Dairbekov and V. N. Dyatlov, and revised by the author, Translation edited and with a foreword by S. S. Kutateladze. | MR | Zbl
,