Given an embeddable manifold and a non-characteristic hypersurface we present a necessary condition for the tangential Cauchy-Riemann operator on to be locally solvable near a point in one of the sides determined by .
@article{ASNSP_2005_5_4_4_587_0, author = {Nicola, Fabio}, title = {On the absence of the one-sided {Poincar\'e} lemma in {Cauchy-Riemann} manifolds}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {587--600}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 4}, number = {4}, year = {2005}, mrnumber = {2207735}, zbl = {1170.32315}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2005_5_4_4_587_0/} }
TY - JOUR AU - Nicola, Fabio TI - On the absence of the one-sided Poincaré lemma in Cauchy-Riemann manifolds JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2005 SP - 587 EP - 600 VL - 4 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2005_5_4_4_587_0/ LA - en ID - ASNSP_2005_5_4_4_587_0 ER -
%0 Journal Article %A Nicola, Fabio %T On the absence of the one-sided Poincaré lemma in Cauchy-Riemann manifolds %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2005 %P 587-600 %V 4 %N 4 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2005_5_4_4_587_0/ %G en %F ASNSP_2005_5_4_4_587_0
Nicola, Fabio. On the absence of the one-sided Poincaré lemma in Cauchy-Riemann manifolds. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 4, pp. 587-600. http://archive.numdam.org/item/ASNSP_2005_5_4_4_587_0/
[1] On the absence of the Poincaré lemma in tangential Cauchy-Riemann complexes, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 8 (1981), 365-404. | Numdam | MR | Zbl
, and ,[2] E.E. Levi convexity and the Hans Lewy problem, I and II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 26 (1972), 325-363, 747-806. | Numdam | Zbl
and ,[3] Local solvability for a class of differential complexes, Acta Math. 187 (2001), 191-212. | MR | Zbl
and ,[4] “Hyperfunctions on Hypo-Analytic Manifolds”, Annals of Mathematics Studies, Vol. 136. Princeton University Press, Princeton, NJ, 1994. | MR | Zbl
and ,[5] “Partial Differential Equations in Several Complex Variables”, Studies in Advanced Mathematics, Vol. 19, Amer. Math. Soc., International Press, Providence, RI, 2001. | MR | Zbl
and ,[6] Estimates for the complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429-522. | MR | Zbl
and ,[7] On the failure of the Poincaré lemma for II, preprint. | MR
and ,[8] Differential operators of principal type, Math. Ann. 140 (1960), 124-146. | MR | Zbl
,[9] A vanishing theorem for a class of systems with simple characteristics, Invent. Math. 82 (1985), 579-592. | MR | Zbl
and ,[10] An example of a smooth linear partial differential equation without solution, Ann. of Math. 66 (1957), 155-158. | MR | Zbl
,[11] “Differential Analysis on Manifolds with Corners”, book in preparation, available at www
,[12] Sur la régularité du au bord d’un domaine de dont la forme de Levi a exactement valeus propres négatives, Math. Ann. 295 (1993), 135-161. | MR | Zbl
,[13] Poincaré lemma for tangential Cauchy-Riemann complexes, Math. Ann. 268 (1984), 449-471. | MR | Zbl
,[14] On strict Levi -convexity and -concavity on domains with piecewise smooth boundaries, Math. Ann. 281 (1988), 459-482. | MR | Zbl
,[15] Tangential Cauchy-Riemann equations on quadratic CR manifolds, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei 13 (2002), 125-134. | MR
and ,[16] “Homotopy Formulas in the Tangential Cauchy-Riemann Complex”, Memoirs, Vol. 87, No. 434, Amer. Math. Soc., Providence, RI, 1990. | MR | Zbl
,[17] “Hypo-analytic Strucures: Local Theory”, Princeton University Press, Princeton, 1992. | MR | Zbl
,[18] A treasure trove of geometry and analysis: The hyperquadric, Notices Amer. Math. Soc. 47 (2000), 1246-1256. | MR | Zbl
,