Multivariate moment problems : geometry and indeterminateness
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 5 (2006) no. 2, p. 137-157
The most accurate determinateness criteria for the multivariate moment problem require the density of polynomials in a weighted Lebesgue space of a generic representing measure. We propose a relaxation of such a criterion to the approximation of a single function, and based on this condition we analyze the impact of the geometry of the support on the uniqueness of the representing measure. In particular we show that a multivariate moment sequence is determinate if its support has dimension one and is virtually compact; a generalization to higher dimensions is also given. Among the one-dimensional sets which are not virtually compact, we show that at least a large subclass supports indeterminate moment sequences. Moreover, we prove that the determinateness of a moment sequence is implied by the same condition (in general easier to verify) of the push-forward sequence via finite morphisms.
@article{ASNSP_2006_5_5_2_137_0,
     author = {Putinar, Mihai and Scheiderer, Claus},
     title = {Multivariate moment problems : geometry and indeterminateness},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 5},
     number = {2},
     year = {2006},
     pages = {137-157},
     zbl = {1170.44302},
     mrnumber = {2244695},
     language = {en},
     url = {http://http://www.numdam.org/item/ASNSP_2006_5_5_2_137_0}
}
Putinar, Mihai; Scheiderer, Claus. Multivariate moment problems : geometry and indeterminateness. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 5 (2006) no. 2, pp. 137-157. http://www.numdam.org/item/ASNSP_2006_5_5_2_137_0/

[1] N. I. Akhiezer, “The Classical Moment Problem”, Oliver and Boyd, Edinburgh and London, 1965.

[2] H. Bauer, “Probability Theory”, De Gruyter, Berlin, 1996. | MR 1385460 | Zbl 0868.60001

[3] S. Bochner, “Harmonic Analysis and the Theory of Probability”, Univ. California Press, Berkeley, 1955. | MR 72370 | Zbl 0068.11702

[4] N. Bourbaki, “Algebra I”, Chapters 1-3. “Elements of Mathematics”, Springer, Berlin, 1989. | MR 979982 | Zbl 0666.13001

[5] J. Cimpric, S. Kuhlmann and C. Scheiderer, Work in progress on G-invariant moment problems.

[6] A. Devinatz, Two parameter moment problems, Duke Math. J. 24 (1957), 481-498. | MR 92019 | Zbl 0081.10104

[7] B. Fuglede, The multidimensional moment problem, Expo. Math. 1 (1983), 47-65. | MR 693807 | Zbl 0514.44006

[8] H. Hamburger, Beiträge zur Konvergenztheorie der Stieltjesschen Kettenbrüche, Math. Z. 4 (1919), 186-222. | JFM 47.0428.01 | MR 1544361

[9] H. Hamburger, Über die Konvergenz eines mit einer Potenzreihe assoziierten Kettenbruchs, Math. Ann. 20 (1920), 31-46. | JFM 47.0430.01 | MR 1511955

[10] E. K. Haviland, On the momentum problem for distribution functions in more than one dimension, II, Amer. J. Math. 58 (1936), 164-168. | JFM 62.0483.01 | MR 1507139

[11] G. M. Henkin and A. A. Shananin, Bernstein theorems and Radon transform. Application to the theory of production functions, In: “Mathematical Problems of Tomography”, Transl. Math. Monogr. 81, Amer. Math. Soc., Providence, RI, 1990, 189-223. | MR 1104018 | Zbl 0794.44003

[12] A. G. Kostyučenko and B. S. Mityagin, Positive-definite functionals on nuclear spaces, Trudy Moskov Mat. Obsc. (in Russian) 9 (1960), 283-316; English translation, I. M. Gelfand and S. G. Gindikin (eds.), in Amer. Math. Soc. Transl. (ser. 2) 93 (1970), 1-43. | MR 124729 | Zbl 0117.09801

[13] E. Nelson, Analytic vectors, Ann. of Math. 70 (1959), 572-615. | MR 107176 | Zbl 0091.10704

[14] A. E. Nussbaum, A commutativity theorem for unbounded operators in Hilbert space, Trans. Amer. Math. Soc. 140 (1969), 485-491. | MR 242010 | Zbl 0181.40905

[15] O. Perron, “Die Lehre von den Kettenbrüchen”, Zweite verbesserte Auflage. Chelsea Publ. Comp. (reprint), New York, 1950. | MR 37384 | Zbl 0041.18206

[16] L. C. Petersen, On the relation between the multidimensional moment problem and the one-dimensional moment problem, Math. Scand. 51 (1982), 361-366. | MR 690537 | Zbl 0514.44007

[17] C. Procesi and G. Schwarz, Inequalities defining orbit spaces, Invent. math. 81 (1985), 539-554. | MR 807071 | Zbl 0578.14010

[18] M. Riesz, Sur le problème des moments. Troisième Note, Ark. Mat. Astr. Fys. 17 (1923), 1-52. | JFM 49.0195.01

[19] C. Scheiderer, Sums of squares on real algebraic curves, Math. Z. 245 (2003), 725-760. | MR 2020709 | Zbl 1056.14078

[20] K. Schmüdgen, On determinacy notions for the two dimensional moment problem, Ark. Math. 29 (1991), 277-284. | Zbl 0762.44004

[21] J. A. Shohat and J. D. Tamarkin, “The Problem of Moments”, Amer. Math. Soc., Providence, R.I., 1943. | MR 8438 | Zbl 0112.06902