On the arithmetic properties of complex values of Hecke-Mahler series. I. The rank one case
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 5 (2006) no. 3, p. 329-374

Here we characterise, in a complete and explicit way, the relations of algebraic dependence over of complex values of Hecke-Mahler series taken at algebraic points u ̲ 1 ,...,u ̲ m of the multiplicative group 𝔾 m 2 (), under a technical hypothesis that a certain sub-module of 𝔾 m 2 () generated by the u ̲ i ’s has rank one (rank one hypothesis). This is the first part of a work, announced in [Pel1], whose main objective is completely to solve a general problem on the algebraic independence of values of these series.

Classification:  11J85,  11J91
@article{ASNSP_2006_5_5_3_329_0,
     author = {Pellarin, Federico},
     title = {On the arithmetic properties of complex values of Hecke-Mahler series. I. The rank one case},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 5},
     number = {3},
     year = {2006},
     pages = {329-374},
     zbl = {1116.11057},
     mrnumber = {2274783},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2006_5_5_3_329_0}
}
Pellarin, Federico. On the arithmetic properties of complex values of Hecke-Mahler series. I. The rank one case. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 5 (2006) no. 3, pp. 329-374. http://www.numdam.org/item/ASNSP_2006_5_5_3_329_0/

[BS] Z. Borevich and I. Shafarevich, “Number theory”, Academic Press, New York, London, 1966. | MR 195803 | Zbl 0145.04902

[Ku] K. K. Kubota, On the Algebraic Independence of Holomorphic Solutions of Certain Functional Equations and their Values, Math. Ann. 227 (1977), 9-50. | MR 498423 | Zbl 0359.10030

[Lo-Po2] J. H. Loxton and A. J. Van Der Poorten, Arithmetic properties of certain functions in several variables II, J. Australian Math. Soc. A24 (1977), 393-408. | MR 506055 | Zbl 0339.10027

[Lo-Po3] J. H. Loxton and A. J. Van Der Poorten, Algebraic independence properties of the Fredholm series, J. Australian Math. Soc. A29 (1978), 31-45. | MR 510583 | Zbl 0392.10034

[Mah] K. Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen, Math. Ann. 101 (1929), 342-366. | JFM 55.0115.01 | MR 1512537

[Mas1] D. W. Masser, A Vanishing theorem for Power Series, Invent. Math. 67 (1982), 275-296. | MR 665158 | Zbl 0481.10034

[Mas2] D. W. Masser Algebraic independence properties of the Hecke-Mahler series, Quart. J. Math. Oxford 50 (1999), 207-230. | MR 1697155 | Zbl 0929.11021

[Ni] K. Nishioka, “Mahler functions and transcendence”, Springer Lecture Notes in Mathematics, Vol. 1631, 1996. | MR 1439966 | Zbl 0876.11034

[Pel1] F. Pellarin, Propriétés d'indépendance algébrique de valeurs de séries de Hecke-Mahler, C. R. Acad. Sci. Paris, Ser. I. 340 (2005), 861-866. | MR 2151774 | Zbl 1098.11040

[Pel2] F. Pellarin, On the arithmetic properties of complex values of Hecke-Mahler series II, preprint. | Zbl 1116.11057

[Per] O. Perron, “Die Lehre von den Kettenbrüchen”, Chelsea Publishing Company, New York, 1957. | MR 37384 | Zbl 0041.18206