We investigate the following quasilinear and singular problem,
@article{ASNSP_2007_5_6_1_117_0, author = {Giacomoni, Jacques and Schindler, Ian and Tak\'a\v{c}, Peter}, title = {Sobolev versus {H\"older} local minimizers and existence of multiple solutions for a singular quasilinear equation}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {117--158}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 6}, number = {1}, year = {2007}, mrnumber = {2341518}, zbl = {1181.35116}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2007_5_6_1_117_0/} }
TY - JOUR AU - Giacomoni, Jacques AU - Schindler, Ian AU - Takáč, Peter TI - Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2007 SP - 117 EP - 158 VL - 6 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2007_5_6_1_117_0/ LA - en ID - ASNSP_2007_5_6_1_117_0 ER -
%0 Journal Article %A Giacomoni, Jacques %A Schindler, Ian %A Takáč, Peter %T Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2007 %P 117-158 %V 6 %N 1 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2007_5_6_1_117_0/ %G en %F ASNSP_2007_5_6_1_117_0
Giacomoni, Jacques; Schindler, Ian; Takáč, Peter. Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 6 (2007) no. 1, pp. 117-158. http://archive.numdam.org/item/ASNSP_2007_5_6_1_117_0/
[1] Adimurthi and J. Giacomoni 8 (2006), 621-656. | MR | Zbl
[2] Combined effects of concave and convexe nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519-543. | MR | Zbl
, and ,[3] Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal. 137 (1996), 219-242. | MR | Zbl
, and ,[4] Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381. | MR | Zbl
and ,[5] Simplicité et isolation de la première valeur propre du -laplacien avec poids, C.R. Acad. Sci. Paris, Sér. I-Math. 305 (1987), 725-728. | MR | Zbl
,[6] “Etude des valeurs propres et de la résonance pour l’opérateur -Laplacien", Thèse de doctorat, Université Libre de Bruxelles, 1988, Brussels.
,[7] Existence and multiplicity of positive solutions for a singular problem associated to the -Laplacian operator, Electron. J. Differential Equations 132 (2004), 1-15. | MR | Zbl
and ,[8] Emden-Fowler equations involving critical exponents, Nonlinear Anal. 10 (1986), 755-776. | MR | Zbl
and ,[9] Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal. 19 (1992), 581-597. | MR | Zbl
and ,[10] A relation between point convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486-490. | MR | Zbl
and ,[11] Positive solutions of nonlinear elliptic equation involving the critical Sobolev exponent, Comm. Pure Appl. Math. 36 (1983), 437-477. | MR | Zbl
and ,[12] Minima locaux relatifs à et , C.R. Acad. Sci. Paris, Sér. I-Math. 317 (1993), 465-472. | Zbl
and ,[13] On a singular nonlinear Dirichlet problem, Comm. Partial Differential Equations 14 (1989), 1315-1327. | MR | Zbl
and ,[14] A strong comparison principle for positive solutions of degenerate elliptic equations, Differential Integral Equations 13 (2000), 721-746. | MR | Zbl
and ,[15] On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations 2 (1977), 193-222. | MR | Zbl
, and ,[16] “Nonlinear Functional Analysis”, Springer-Verlag, Berlin-Heidelberg-New York, 1985. | MR | Zbl
,[17] Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C.R. Acad. Sci. Paris, Sér. I-Math. 305 (1987), 521-524. | MR | Zbl
and ,[18] An elliptic equation with singular nonlinearity, Comm. Partial Differential Equations 12 (1987), 1333-1344. | MR | Zbl
, and ,[19] local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983), 827-850. | MR | Zbl
,[20] Some results about the existence of a second positive solution in a quasilinear critical problem, Indiana Univ. Math. J. 43 (1994), 941-957. | MR | Zbl
and ,[21] Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Commun. Contemp. Math. 2 (2000), 385-404. | MR | Zbl
, and ,[22] Multiplicity results for a singular and quasilinear equation, submitted for publication. | Zbl
and ,[23] “Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems”, Annals of Mathematics Studies, Princeton University Press, Princeton, N.J., 1983. | MR | Zbl
,[24] Global -regularity for second order quasilinear elliptic equations in divergence form, J. Reine Angew. Math. 351 (1984), 55-65. | MR | Zbl
and ,[25] A general mountain pass principle for locating and classifying critical points, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), 321-330. | Numdam | MR | Zbl
and ,[26] Multiple solutions for quasilinear PDEs involving the critical Sobolev and Hardy Exponents, Trans. Amer. Math. Soc. 352 (2000), 5703-5743. | MR | Zbl
and ,[27] Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal. 13 (1989), 879-902. | MR | Zbl
and ,[28] “Elliptic Partial Differential Equations of Second Order”, Springer-Verlag, New-York, 1983. | MR | Zbl
and ,[29] Multiplicity and asymptotic behavior of positive solutions for a singular semilinear elliptic problem, J. Differential Equations 189 (2003), 487-512. | MR | Zbl
,[30] On the linearization of some singular, nonlinear elliptic problems and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002), 777-813. | Numdam | MR | Zbl
, and ,[31] Existence of multiple positive solutions for singular elliptic problems with concave and convex nonlinearities, Adv. Differential Equations 9 (2004), 197-220. | MR
, and ,[32] On a singular nonlinear elliptic boundary value problem, Proc. Amer. Math. Soc. 111 (1991), 721-730. | MR | Zbl
and ,[33] Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), 1203-1219. | MR | Zbl
,[34] A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1971), 1077-1092. | MR | Zbl
,[35] On a class of nonlinear second order differential equations, Trans. Amer. Math. Soc. 95 (1960), 101-123. | MR | Zbl
,[36] “Convex Functions, Monotone Operators, and Differentiability”, Lecture notes in Mathematics, Vol. 1364, Springer-Verlag, Berlin, 1993. | MR | Zbl
,[37] Multiplicity Results in a ball for Laplace equation in a ball with positive nonlinearity, Adv. Differential Equations 7 (2002), 877-896. | MR | Zbl
and ,[38] Quasilinear elliptic boundary-value problems on unbounded cylinders and a related mountain-pass lemma, Arch. Rational Mech. Anal. 120 (1992), 363-374. | MR | Zbl
,[39] Local behavior of solutions of quasilinear elliptic equations, Acta Math. 111 (1964), 247-302. | MR | Zbl
,[40] On the Fredholm alternative for the -Laplacian at the first eigenvalue, Indiana Univ. Math. J. 51 (2002), 187-237. | MR | Zbl
,[41] On the Dirichlet problem for quasilinear equations in domans with conical boundary points, Comm. Partial Differential Equations 8 (1983), 773-817. | MR | Zbl
,[42] Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), 126-150. | MR | Zbl
,[43] A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191-202. | MR | Zbl
,[44] Combined effects of singular and superlinear nonlinearities in some singular boundary value problems, J. Differential Equations 176 (2001), 511-531. | MR | Zbl
, and ,