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Hamilton-Jacobi flows and characterization of solutions of
Aronsson equations

PETRI JUUTINEN AND EERO SAKSMAN

Abstract. In this note, we verify the conjecture of Barron, Evans and Jensen [3]
regarding the characterization of viscosity solutions of general Aronsson equa-
tions in terms of the properties of associated forward and backwards Hamilton-
Jacobi flows. A special case of this result is analogous to the characterization of
infinity harmonic functions in terms of convexity and concavity of the functions
r �→ maxy∈Br (x) u(y) and r �→ miny∈Br (x) u(y), respectively.
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(secondary).

1. Introduction

The problem of minimizing the supremum functional

S(u, �) = ess sup
x∈�

H(Du(x))

has as an Euler-Lagrange equation the so-called Aronsson equation

AH [u] :=
n∑

i, j=1

Hpi (Du)Hp j (Du)ui j = (
D2u DH(Du)

) · DH(Du) = 0, (1.1)

see [4, 6]. Here, and throughout the paper, we assume that the Hamiltonian H :
Rn → R satisfies the following conditions:

(i) H ∈ C2(Rn \ {0}) ∩ C1(Rn), H(0) = 0 and H(p) ≥ 0 for all p ∈ Rn ,
(ii) H is convex and locally uniformly convex outside origin, i.e. for any compact

K ⊂ Rn \ {0} there exists a constant c = c(K ) > 0 such that

1

2

(
H(p) + H(p′)

) ≥ H

(
p + p′

2

)
+ c

2
|p − p′|2

for all p, p′ ∈ K .
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(iii) H is superlinear:

lim inf|p|→∞
H(p)

|p| = ∞.

Observe that e.g. the Hamiltonian H(p) = 1
q |p|q satisfies the above requirements,

assuming that q ∈ (1, ∞). For this kind of very special choices, where H depends
only on the modulus |p|, the equation (1.1) is equivalent to the popular infinity
Laplace equation, first investigated by Aronsson [1]. It governs the problem of
finding “optimal” Lipschitz extensions and appears in many other applications, see
[2]. Recently the infinity Laplace equation has been given a game-theoretic inter-
pretation involving a random turn tug-of-war game, see [13, 3].

For a Lipschitz continuous function u : Rn → R, let w(x, t) and v(x, t) be the
unique viscosity solutions to the Hamilton-Jacobi flow equations{

wt − H(Dw) = 0 in Rn× ]0, ∞[,
w = u for t = 0,

(1.2)

and {
vt + H(Dv) = 0 in Rn× ]0, ∞[,
v = u for t = 0.

(1.3)

Our main result is the following:

Theorem 1.1. A Lipschitz continuous function u : Rn → R is a viscosity subsolu-
tion of −AH [ϕ] = 0 in Rn if and only if the function t �→ w(x, t) in (1.2) is convex
for all x ∈ Rn. Similarly, u is a viscosity supersolution of −AH [ϕ] = 0 in Rn if
and only if the function t �→ v(x, t) in (1.3) is concave for all x ∈ Rn.

This characterization of subsolutions and supersolutions of (1.1) was conjec-
tured by Barron, Evans and Jensen in [3]. Let us briefly recall its formal derivation.
By differentiating (1.2) (assume w is smooth) with respect to t and xk , we obtain

wt t −
n∑

i=1

Hpi (Dw)wxi t = 0

and

wt xk −
n∑

i=1

Hpi (Dw)wxi xk = 0.

Substituting the second equation to the first yields

wt t − AH [w] = 0. (1.4)

Using the fact that the flow (1.2) preserves subsolutions of (1.1), i.e., if −AH [u] ≤ 0
then −AH [w(·, t)]≤0 for all t >0 (see Lemma 2.1 below), we see that −AH [u]≤ 0
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implies wt t ≥ 0. Hence t �→ w(x, t) is convex for every x . Conversely, the
convexity of t �→ w(x, t) together with (1.4) imply that −AH [w(·, t)] ≤ 0 for all
t > 0 and hence also −AH [u] ≤ 0. The reasoning in the supersolution case is
analogous, with the equation (1.2) being replaced by (1.3).

Already in the particular case of the infinity Laplacian �∞u = ∑
ui u j ui j

Theorem 1.1 generalizes the known characterization of the subsolutions of the in-
finity Laplace equation −�∞u = 0 in terms of the convexity of the function

t �→ max|x−y|=t
u(y) = max

y∈Bt (x)
u(y),

cf. [2, Section 4]. Indeed, this latter case correspond to the limiting case H(p) =
|p|, where the convexity assumptions on H are no more valid. For this choice of
Hamiltonian one can show that the functions w and v in (1.2) and (1.3) are precisely
given as w(x, t) = maxy∈Bt (x) u(y) and v(x, t) = miny∈Bt (x) u(y). We refer to [3]
for more details.

Our idea for the proof of Theorem 1.1 is quite simple and starts with the ob-
servation that the evolution of a generalized cone function with non-negative slope
under the backwards flow (1.2) is affine in time. More precisely, it is easy to check
that in the radially symmetric case H(p) = 1

2 |p|2, the unique viscosity solution to
the equation wt − 1

2 |Dw|2 = 0 with initial data C(x) = a|x − x0| + b, a ≥ 0,
is given as w(x, t) = C(x) + 1

2 a2t . For a general Hamiltonian H the situation is
analogous, see Proposition 2.5 below. Thus, in order to prove Theorem 1.1, it suf-
fices to show that the comparison principle with respect to generalized cones that
characterizes the viscosity subsolutions of (1.1) translates via (1.2) to comparison
with respect to affine functions that in turn characterizes convexity, and vice versa.
These two implications are proved in Sections 3 and 4.

Theorem 1.1 is stated for Lipschitz functions defined in the whole Rn mainly
for the sake of clarity and transparency of the exposition. It will be clear from the
proofs that the characterization is indeed local and applies to continuous functions
defined on a subdomain � ⊂ Rn . We will elaborate on this in Section 5.

2. Preliminaries

2.1. Hamilton-Jacobi flows

It is well-known (see e.g. [15]) that the functions w and v in (1.2) and (1.3), respec-
tively, are given by the Hopf-Lax formulas

w(x, t) = sup
y∈Rn

(
u(y) − t L

(
y − x

t

))

v(x, t) = inf
y∈Rn

(
u(y) + t L

(
y − x

t

))
,

(2.1)
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where
L(q) := sup

p∈Rn

(
p · q − H(p)

)
is the Legendre transform of H . Since u is Lipschitz continuous, it is enough to
take the sup and inf in (2.1) over those y’s that satisfy

L

(
y − x

t

)
< Lip(u)

|y − x |
t

. (2.2)

By the superlinearity of L , this set is contained in the ball BMt (x) for some M =
M(H, Lip(u)) > 0.

The Hamilton-Jacobi equations (1.2) and (1.3) appear frequently as smoothing
devices in the theory of viscosity solutions. More precisely, the so-called inf- and
sup-convolutions of u (see e.g. [8, 12]) are nothing but the functions x �→ w(x, ε)

and x �→ v(x, ε) given by (2.1) in the case H(p) = L(p) = 1
2 |p|2. These convolu-

tions provide semiconcave viscosity supersolutions and semiconvex subsolutions,
respectively, for translation invariant equations.

Lemma 2.1. A uniformly continuous function u : Rn → R is a viscosity subso-
lution of −AH [ϕ] = 0 in Rn if and only if the function x �→ w(x, t) is viscosity
subsolution of −AH [ϕ] = 0 in Rn for every t > 0.

Proof. This result is well-known, cf. [12, 2], but for the reader’s convenience we
sketch the proof. Suppose first that −AH [u] ≤ 0 (in the viscosity sense) and let
h(x) = w(x, t) for some fixed t > 0. Since the Aronsson equation (1.1) is transla-
tion invariant, each of the functions

x �→ u(x + t z) − t L(z), z ∈ Rn

is a subsolution and clearly also uniformly continuous with the same modulus of
continuity as u. Hence it follows from the definition of viscosity solutions that also

h(x) = sup
z∈Rn

(u(x + t z) − t L(z))

is a viscosity subsolution of −AH [ϕ] = 0 in Rn .
The converse implication follows from the stability of viscosity solutions and

the fact that w(x, t) → u(x) locally uniformly as t → 0.

2.2. Generalized cone comparison

The characterization of solutions in terms of the cone functions x �→ a|x − x0|+ b,
discovered by Crandall, Evans and Gariepy in [7], is arguably the most important
tool in the theory of the infinity Laplace equation. A similar characterization of the
solutions of Aronsson equations of the form (1.1) has been recently obtained by
Gariepy, Wang and Yu in [10] (see also [5, 16, 18]). Let us recall their main result.
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Definition 2.2. For k ≥ 0, a generalized cone centered at the origin with slope k is
defined by

C H
k (x) := max

H(p)=k
x · p. (2.3)

Definition 2.3. A continuous function u : Rn → R enjoys comparison with gener-
alized cones from above if we have, for any bounded open set V ⊂ Rn , x0 /∈ V and
k ≥ 0 that

u(x) ≤ u(x0) + C H
k (x − x0) for all x ∈ ∂V

implies
u(x) ≤ u(x0) + C H

k (x − x0) for all x ∈ V .

A continuous function u : Rn → R enjoys comparison with generalized cones from
below if −u enjoys comparison with generalized cones from above with respect to
the Hamiltonian Ĥ(p) := H(−p).

Theorem 2.4 ([10]). A continuous function u is a viscosity subsolution of the Aron-
sson equation −AH [u] = 0 if and only if u enjoys comparison with generalized
cones from above.

We next recall some basic properties of the generalized cone functions with
k > 0. Since C H

k is the supremum of linear functions x �→ p·x , where p ∈ H−1(k),
it is convex and Lipschitz continuous with the constant Rk = max{|p| : H(p) = k}.
Actually, by definition C H

k is the support function of the convex set

Kk := {p : H(p) ≤ k}.
Our assumptions on H imply that the surface ∂Kk is of class C2 and uniformly
convex, whence all its principal curvatures lie above a positive constant. This is
known to imply C H

k ∈ C2(Rn \ {0}, and that the boundary of the dual convex set
K ∗

k := {C H
k (x) ≤ 1} is also of class C2 and uniformly convex as well. By scaling

the same holds for all non-trivial level sets of the function C H
k . We refer e.g. to [14,

Section 2.5] for the above facts.
Moreover, it is geometrically evident that for x �= 0, the maximum in (2.3) is

attained by the unique p ∈ H−1(k) for which

DH(p)

|DH(p)| = x

|x | .

Hence, if we denote by Yk : Sn−1 → H−1(k) the inverse Gauss map defined by

Y −1
k (q) = DH(q)

|DH(q)| for q ∈ H−1(k), (2.4)

it follows that C H
k (x) = x ·Yk(

x
|x | ) for x �= 0 and, by the discussion in the preceding

paragraph (see also [10]) we have that Yk ∈ C1(Sn−1). Furthermore,

DC H
k (x) = Yk

(
x

|x |
)

for x �= 0. (2.5)
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Indeed, by definition, C H
k (y) − p · y ≥ 0 for all y ∈ Rn and for any fixed p ∈

H−1(k) (and hence for p = Yk(
x
|x | )). On the other hand, the equality C H

k (x) −
Yk(

x
|x | ) · x = 0 holds for x �= 0 by the definition of Yk(

x
|x | ), and thus the mapping

y �→ C H
k (y) − Yk(

x
|x | ) · y attains its minimum at x . The relation (2.5) now follows.

The proof of Theorem 1.1 relies strongly on the following observation:

Proposition 2.5. Let �(x, t) be the unique viscosity solution to{
�t − H(D�) = 0 in Rn×]0, ∞[,
� = C H

k for t = 0.
(2.6)

Then �(x, t) = C H
k (x) + kt. In particular, t �→ �(x, t) is affine for all x ∈ Rn. If

x = 0 and t > 0, then in the representation

�(x, t) = max
y∈Rn

(
C H

k (y) − t L

(
y − x

t

))
, (2.7)

the maximum is achieved exactly at all points y that satisfy y ∈ t Sk, where

Sk := DH(H−1(k)).

The surface Sk is the boundary of a bounded domain that contains the origin.

Proof. By the above discussion, the function (x, t) �→ C H
k (x) + kt satisfies the

equation ft − H(D f ) = 0 a.e. and is (semi)convex, and therefore it is the unique
viscosity solution to (2.6). See e.g. [9, Sections 3.3 and 10.3].

In order to prove the last statement of the theorem we may assume that t = 1,
as the general case is readily obtained by scaling. We shall determine the zero-
set of the derivative of the difference F(y) := C H

k (y) − L(y). Observe that F is
differentiable outside the origin and assume first that z �= 0 satisfies H(z) = k. The
0-homogeneity of the function DC H

k and the formulae (2.4) and (2.5) yield

DC H
k (DH(z)) = DC H

k

(
DH(z)

|DH(z)|
)

= Yk

(
DH(z)

|DH(z)|
)

= z.

By substituting above z = DL(y) and applying the relation DH ◦ DL = I (see e.g.
[17, Chapter 51]), we see that the condition H(DL(y)) = k implies DC H

k (y) =
DL(y), or in other words DF(y) = 0. Conversely, if DF(y) = 0 and y �= 0, then

H(DL(y)) = H
(

DC H
k (y)

)
= H

(
Yk

(
y

|y|
))

= k.

Using again the fact DH ◦ DL = I we see that the condition H(DL(y)) = k
is equivalent to y ∈ DH(H−1(k)). We have thus shown that Sk = {y �= 0 :
DF(y) = 0}. Since the function F attains its maximum outside origin, and the
compact and connected surface Sk is locally Lipschitz, we deduce that F attains its
maximum exactly at the points y ∈ S. The remaining statements are obvious.
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Remark 2.6. Due to the semiconvexity requirement for the solution of (2.6), Pro-
position 2.5 does not hold for cones with negative slope. See [9, Section 3.3] for an
explicit counterexample.

The following technical lemma is needed later on.

Lemma 2.7. (i) We have

C H
k (y + x) ≤ C H

k (x) + C H
k (y) for any x, y ∈ Rn.

(ii) Let k > 0 and x ∈ Rn \ {0}. Then

D2C H
k (x)ξ · ξ ≥ 0 (2.8)

for all ξ �= 0 and the equality holds if and only if ξ is parallel to x .

Proof. (i) As noted in [10], this follows immediately from the definition of C H
k :

C H
k (y + x) = max

H(p)=k
(x + y) · p ≤ max

H(p)=k
x · p + max

H(p)=k
y · p

= C H
k (x) + C H

k (y).

(ii) The stated inequality follows directly from the convexity of the function C H
k .

In order to treat the case of equality, we first show that there is a positive constant
β such that

D2C H
k (x)ξ · ξ ≥ β|ξ |2 for any ξ with ξ · DCk(x) = 0. (2.9)

Denote p = DCk(x) and T = {ξ : p · ξ = 0}. The surface U = {y : C H
k (y) =

C H
k (x)} = C H

k (x)K ∗ is uniformly convex and the hyperplane T + x is tangent to
U at the point x . Hence the map ξ �→ dist(x + ξ, U ), where ξ ∈ T , is uniformly
convex. A fortiori, if ξ ∈ T is small enough we may use the homogeneity of C H

k to
estimate

C H
k (x + ξ) ≥ b1dist(ξ + x, U ) + C H

k (x) ≥ b2|ξ |2 + C H
k (x),

where b2 > 0. This immediately yields inequality (2.9).
According to (2.9) the rank of the matrix D2C H

k (x) is at least n − 1, and by
noting that D2C H

k (x)x · x = 0 we see that it is exactly n − 1. These observations
yield the second part of the lemma.

3. Sufficiency

Theorem 2.4 already implies that if u is not a viscosity subsolution of −AH [u] = 0,
then the comparison with respect to generalized cones from above fails. However,
in the proof of Theorem 1.1 we will need a refined version of this fact.
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Proposition 3.1. Assume that � ⊂ Rn is a domain and that the function u ∈ C(�)

is not a viscosity subsolution of −AH [u] = 0 in �. Then there exists x̂ ∈ � and k >

0 with the following property: for all δ ∈ (0, 1
2 dist(x̂, ∂�)) and N ≥ 1 there exists

ε > 0, a point x0 ∈ B(x̂, ε), and a generalized cone C(x) = C H
k (x − x0) + u(x0)

such that 0 < Nε < δ and, moreover

1. the set D := {x ∈ BNε(x0) : u(x) > C(x)} is non-empty and contained in
Bε(x0). Moreover, x0 ∈ ∂ D.

2. supBNε(x0)
(u − C) ≤ ε.

Proof. Since u is not a viscosity subsolution of −AH [u] = 0, there exists ϕ ∈
C2(�) and x̂ ∈ � such that 0 = u(x̂) − ϕ(x̂) > u(x) − ϕ(x) for x ∈ � \ {x̂} and(

D2ϕ(x̂)DH(Dϕ(x̂))
) · DH(Dϕ(x̂)) < 0. (3.1)

Assume that δ ∈ (0, 1
3 dist(x̂, ∂�)) and N ≥ 1 are given. In order to prove our

claim, it suffices to show that there exists a > 0, b ∈ R and y0 ∈ B(x̂, δ/3N )

such that the function ϕ − (C H
a (x − y0) + b) has a strict local zero maximum

at x̂ . Indeed, if this is the case, by first decreasing b slightly enough and then
translating the vertex y0 along the segment [y0, x̂) to a point x0 at which u and the
dropped cone agree (and adjusting b again suitably), we obtain (1) and (2) with an
appropriate ε > 0. The translation preserves the required other properties of the
cone, as is easily seen with the aid of Lemma 2.7 (i).

Let p = Dϕ(x̂), whence (3.1) shows that p �= 0. Denote a = H(p) > 0 and
z0 = DH(p)

|DH(p)| �= 0. For z = λz0, where the constant λ > 0 small enough will be

chosen below, it holds that C H
a (z) = z · p and DC H

a (z) = p, cf. (2.5). We define

C0(x) = C H
a (x − y0) + b,

where a = H(p) = H(Dϕ(x̂)), y0 = x̂ − z and b = ϕ(x̂) − C H
a (x̂ − y0). Then

C0(x̂) = ϕ(x̂) and DC0(x̂) = DC H
a (z) = Dϕ(x̂), and thus is suffices to check the

strict matrix inequality D2C0(x̂) > D2ϕ(x̂).
Let us denote Sn−1 = {y : |y| = 1} and

A = {ξ ∈ Sn−1 : D2ϕ(x̂)ξ · ξ ≥ 0}.
Set α := supξ∈Sn−1 D2ϕ(x̂)ξ · ξ . Observe that (3.1) implies that z0 is not in the
closure of A. Hence, by Lemma 2.7 (ii), the quantity

c := inf
ξ∈A

D2C H
a (z0)ξ · ξ

is positive. Thus, by scaling and the (-1)-homogeneity of D2C H
a we obtain that

D2C0(x̂)ξ · ξ = λ−1 D2C H
a (z0)ξ · ξ > D2ϕ(x̂)ξ · ξ for all ξ �= 0 (3.2)

as soon as λ < c/α. In other words, then D2C0(x̂) > D2ϕ(x̂). This completes the
proof.
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Let us now prove the sufficiency part of Theorem 1.1. Let u : Rn → R be
Lipschitz continuous and let w ∈ C(Rn × [0, ∞[) be the unique viscosity solution
to {

wt − H(Dw) = 0 in Rn×]0, ∞[,
w = u for t = 0.

If u is not a subsolution of −AH [u] = 0, we choose according to Proposition 3.1
a point x̂ and a constant k > 0 with the stated properties. In particular, if Rk :=
max{|p| : H(p) = k} is the Lipschitz constant of C H

k and M is determined by
(2.2), we may apply the choices δ = 1 and

N = 2M(1 + Rk)

k
+ 1 (3.3)

to infer the existence of an ε ∈ (0, 1/N ) and a cone C(x) = C H
k (x − x0) + u(x0)

such that (1) and (2) of the Proposition hold. Without loss of generality, we may
assume that x0 = 0 and C(0) = u(0) = 0. Let � ∈ C(Rn × [0, ∞[) be the unique
viscosity solution to {

�t − H(D�) = 0 in Rn×]0, ∞[,
� = C for t = 0.

By Proposition 3.1 (1), we can find arbitrarily small t > 0 for which there exist
yt ∈ Rn such that yt ∈ t Sk , i.e. H(DL(

yt
t )) = k, and u(yt ) > C H

k (yt ). Thus, for
such t’s, we obtain using Proposition 2.5 that

�(0, t) = C H
k (yt ) − t L

( yt

t

)
< u(yt ) − t L

( yt

t

)
≤ w(0, t). (3.4)

On the other hand, by the choice of N we see that

�

(
0,

Nε

M

)
≥ w

(
0,

Nε

M

)
. (3.5)

Indeed, if t = Nε
M we have BMt (0) = BNε(0) and thus, in view of Proposition 3.1,

the reverse inequality �(0, t) < w(0, t) can hold only if there exists z ∈ Bε(0)

such that u(z) > C H
k (z) and u(z) − t L

( z
t

)
> �(0, t). Since u(z) ≤ C H

k (z) + ε and
�(0, t) = kt , we must then have

C H
k (z) + ε − t L

( z

t

)
> kt.

But this is impossible, because

C H
k (z) + ε − t L

( z

t

)
≤ C H

k (z) + ε ≤ (1 + Rk)ε ≤ k
Nε

2M
≤ kt

by the choice of N . By combining (3.4) and (3.5) with the equality �(0, 0) =
C(0) = u(0) = w(0, 0), and recalling that t �→ �(0, t) is linear, we conclude that
t �→ w(0, t) is not convex.
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Remark 3.2. Observe that in the above proof we consider only u in the neighbor-
hood B(x̂, δ). Moreover, the time parameter varies over the interval t ∈ [0, δ/M],
where M depends only on H and u, but not on δ. This observation will be needed
later on in Section 5.

4. Necessity

We now prove the necessity part of Theorem 1.1. For a viscosity subsolution u of
−AH [ϕ] = 0, define w(x, 0) = u(x) for x ∈ Rn and denote

w(x, t) = sup
y∈Rn

(
u(y) − t L

(
y − x

t

))
for t > 0 and x ∈ Rn.

Suppose that f (t) := w(0, t) is not convex. Then there exists 0 ≤ t1 < t2 and an
affine function l(t) = at + b such that

l(ti ) = f (ti ), i = 1, 2, and l(t) < f (t) for all t1 < t < t2. (4.1)

By the definition of f and the semigroup property of the flow we see that f is
non-decreasing, whence we may assume without loss of generality that a > 0.
Moreover, by Lemma 2.1 and by invoking again the semigroup property, we may
assume that t1 = 0 and thus b = u(0).

Let C(x) = C H
a (x) + u(0) and let �(x, t) be the unique solution to

{
�t − H(D�) = 0 in Rn×]0, ∞[,
� = C for t = 0,

given by the Hopf-Lax formula

�(x, t) = sup
y∈Rn

(
C(y) − t L

(
y − x

t

))
.

By Proposition 2.5, �(x, t) = C H
a (x) + u(0) + at . In particular, �(0, t) = l(t) for

all t ≥ 0.
For 0 < t < t2, �(0, t) < w(0, t) by (4.1), and by (2.2) this is possible only if

{x : u(x) > C(x)} ∩ B(0, t) �= ∅ for all 0 < t < t2.

On the other hand, by Proposition 2.5, �(0, t2) = w(0, t2) implies that u ≤ C
on the “sphere” t2Sa . We have thus shown that the generalized cone comparison
principle of Definition 2.3 is violated, contrary to the assumption that u is a viscosity
subsolution of −AH [ϕ] = 0.
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5. Characterization in subdomains

Throughout the preceding sections, it was assumed that u is a Lipschitz function
defined in the whole Rn . This rendered the proofs quite transparent, but, in view of
the existing literature on the Aronsson equations, it is also natural to try to consider
more general situations. Fortunately, since all our arguments are local in nature, it
turns out that we need neither the Lipschitz continuity nor the fact that the domain
is the entire Rn to obtain a characterization for the sub- and supersolutions.

Let � ⊂ Rn be a bounded domain and u : � → R a continuous and bounded
function.1 We define

w(x, t) = sup
y∈�

(
u(y) − t L

(
y − x

t

))
, (5.1)

and notice that for a fixed x ∈ � it suffices to take the supremum over those y’s that
satisfy

t L

(
y − x

t

)
≤ 2‖u‖∞. (5.2)

Since L is superlinear, there exists a non-decreasing, continuous function M(t)
such that this set is contained in the ball BM(t)(x). Hence there exists a continuous
function r : � →]0, ∞[ such that for all 0 < t ≤ r(x) the points y for which (5.2)
holds are compactly contained in �.

Remark 5.1. Observe that in the case of a bounded domain, instead of using the
Hamilton-Jacobi equation (1.2), we defined the function w directly by the Hopf-
Lax formula (5.1). However, since the proof of Lemma 2.1 is based on the use of
Hopf-Lax formula, and also the semigroup property of {w(x, t)}t≥0 can be proved
without invoking (1.2), see [9, Section 3.3], we have the same auxiliary results at our
disposal as in the situation of Theorem 1.1. Actually, it turns out that wt = H(Dw)

in the viscosity sense at least in {(x, t) : x ∈ �, 0 < t < r(x)}, cf. [9], but we do
not need this fact.

We now claim that:

Theorem 5.2. A continuous and bounded function u : � → R is a viscosity sub-
solution of the Aronsson equation −AH [ϕ] = 0 in � if and only if t �→ w(x, t)
(where w is defined by (5.1)) is convex in the interval [0, r(x)].

The proof of Theorem 5.2 is essentially the same as that of Theorem 1.1 and
we only indicate the necessary additional observations, retaining the notation and
conventions used before. As regards sufficiency, assume that the bounded function
u ∈ C(�) is not a subsolution. Then, by an analogue of Lemma 2.1 there is a
subdomain �′ ⊂ � and an arbitrary small time instant t0 > 0 such that the function
h(x) = u(x, t0) is not a subsolution in �′. Moreover, by decreasing �′ if needed,
we may assume that h is Lipschitz continuous in �′.

1 Alternatively, we could just assume that u is continuous and work in a subdomain of �.
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One may now proceed exactly as before: we first choose a point x̂ ∈ �′ with
the properties stated in Proposition 3.1. According to Remark 3.2, for small enough
δ > 0 the reasoning in Section 3 takes place in the neighborhood (y, t) ∈ B(x̃, δ)×
[0, δ/M], where x̃ ∈ � and M = M(H, Lip(h), �′) are independent of δ. As
δ > 0 can be taken arbitrarily small, it is clear that the argument used in case
� = Rn carries through unchanged.

Concerning the proof of the necessity, we note that the part of the argument
that may cause problems is the derivation of the inequality u ≤ C on the “sphere”
t2Sa . In fact, it may very well happen that this set is not contained in � and then
u is not even defined on it. To overcome this difficulty, we use a one dimensional
version of Proposition 3.1 (which, of course, can also be proved directly):

Lemma 5.3. Suppose that a continuous non-decreasing function f : [0, d] → R
is not convex. Then there exists x̂ ∈ ]0, d[, and a > 0 with the following properties:
for all small enough δ > 0 and N > 1 there is ε > 0 satisfying 2Nε < δ, a point
x0 with |x0 − x̂ | < ε, and an affine function l(x) = ax + b, a > 0, such that

1. the set D := {x ∈ BNε(x0) : f (x) > l(x)} is non-empty and contained in
Bε(x0). Moreover, x0 ∈ ∂ D.

2. supBNε(x0)
( f − l) ≤ ε.

Thus, if we follow the proof of necessity in Section 4 we may assume that both
t1 > 0 and t2 − t1 > 0 are as small as we wish, and, moreover, that the slope a > 0
does not depend on the choice of t1, t2. After these preliminary observations it is
clear that the argument can be completed exactly as before.
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