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Counting lines on surfaces

SAMUEL BOISSIÈRE AND ALESSANDRA SARTI

Abstract. This paper deals with surfaces with many lines. It is well-known that
a cubic contains 27 of them and that the maximal number for a quartic is 64.
In higher degree the question remains open. Here we study classical and new
constructions of surfaces with high number of lines. We obtain a symmetric octic
with 352 lines, and give examples of surfaces of degree d containing a sequence
of d(d − 2) + 4 skew lines.

Mathematics Subject Classification (2000): 14N10 (primary); 14Q10 (sec-
ondary).

Cubic surface with 27 lines1

1. Introduction

Motivation for this paper is the article of 1943 by Segre [12] which studies the
following classical problem: What is the maximum number of lines that a surface
of degree d in P3 can have? Segre answers this question for d = 4 by using some
nice geometry, showing that it is exactly 64. For the degree three it is a classical
result that each smooth cubic in P3 contains 27 lines, but for d ≥ 5 this number is
still not known. In this case, Segre shows in [12] that the maximal number is less
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than or equal to (d − 2)(11d − 6) but this bound is far from being sharp. Indeed,
already in degree four it gives 76 lines which is not optimal. So on one hand one
can try to improve the upper bound for the number of lines �(d) that a surface of
degree d in P3 can have, on the other hand it is interesting to construct surfaces with
as many lines as possible to give a lower bound for �(d).

It is notoriously difficult to construct examples of surfaces with many lines.
There are two classical constructions:

(1) Surfaces of the kind φ(x, y) = ψ(z, t) where φ and ψ are homogeneous poly-
nomials of degree d.

(2) d-coverings of the plane P2 branched over a curve of degree d .

Segre in [13] studies surfaces of the kind (1) in the case d = 4, showing that
the possible numbers of lines are 16, 32, 48, 64. Caporaso-Harris-Mazur in [3], by
using similar methods as Segre, study the maximal number of lines Nd on such
surfaces in any degree d, showing that Nd ≥ 3d2 for each d and N4 ≥ 64, N6 ≥
180, N8 ≥ 256, N12 ≥ 864, N20 ≥ 1600. In Section 4 we establish the exactness
of these results:

Proposition 4.1. The maximal numbers of lines on φ(x, y) = ψ(z, t) are:

• Nd = 3d2 for d ≥ 3, d �= 4, 6, 8, 12, 20;
• N4 = 64, N6 = 180, N8 = 256, N12 = 864, N20 = 1600.

In particular, we show that it is not possible, with these surfaces, to obtain better
examples and a better lower bound for �(d) (Proposition 4.2). Turning to surfaces
of the kind (2), we prove in Section 6:

Proposition 6.2. Let C be a smooth plane curve with β total inflection points. Then
the surface S obtained as the d-covering of P2 branched over C contains exactly
β · d lines. In particular, it contains no more than 3d2 lines.

As one sees, one can not find more lines by using these two classical methods.
To find better examples, one has to use new ideas: We study symmetric surfaces in
P3 (Section 3). The method is based on the following idea: If a surface has many
automorphisms (many symmetries) then possibly it contains many orbits of lines.
This approach was used successfully in the study of surfaces with many nodes. The
first main result of this paper is:

Theorem 3.1. There exists a smooth octic in P3 with bioctahedral symmetries con-
taining 352 lines.

This shows �(8) ≥ 352, improving the previous bound 256 of [3].
In another direction, one can try to improve the upper bound for �(d). Fol-

lowing the idea of Segre [12] and imposing some extra conditions on the lines on
a surface, we find the interpolation d(7d − 12) which surprisingly agrees with the
maximal known examples in degrees 4, 6, 8, 12 (Section 7.1).



COUNTING LINES ON SURFACES 41

A related problem is to determine the maximal number m(d) of sequences of
skew lines a surface of degree d in P3 can have. It is well-known that m(3) = 6 and
m(4) = 16, and Miyaoka in [7] gives the upper bound m(d) ≤ 2d(d −2) for d ≥ 5.
It seems to be difficult to construct examples of surfaces with many skew lines: The
best examples so far are those of Rams [9, 10] giving examples of surfaces with
d(d − 2) + 2 skew lines (d ≥ 5) and with 19 skew lines for d = 5. The second
main result of this paper improves these results:

Theorem 5.1. For d ≥ 7 and gcd(d, d − 2) = 1 there exists a smooth surface in
P3 containing a sequence of d(d − 2) + 4 skew lines.

ACKNOWLEDGEMENTS. We thank Duco van Straten for suggesting us this nice
problem and for interesting discussions.

2. General results

It is a well-known fact that, in P3, each smooth quadric surface contains an infinite
number of lines, each smooth cubic surface contains exactly 27 lines and a generic
smooth surface of degree d ≥ 4 contains no line ([1, 2, 5]). This leads to the
problem of finding surfaces of degree d ≥ 4 with an optimal number of lines. The
best upper bound known so far is:
Theorem. (Segre [12])

• The number of lines lying on a smooth surface of degree d ≥ 4 does not exceed
(d − 2)(11d − 6).

• The maximum number of lines lying on a smooth quartic is exactly 64.

This bound is effective for d = 4 but for d ≥ 5 it is believed that it could be
improved. For instance, already for d = 4 the uniform bound (d − 2)(11d − 6) is
too big.

A natural question related to the number of lines on a surface is the study of
maximal sequences of pairwise disjoint lines on a smooth surface in P3. The best
upper bound known so far is:

Theorem. (Miyaoka [7, Section 2.2]) The maximal length of a sequence of skew
lines on a smooth surface of degree d ≥ 4 is 2d(d − 2).

For d = 3, each cubic surface contains a maximal sequence of 6 skew lines:
This comes from the study of the configuration of the 27 lines ([5, Theorem V.4.9]).
For d = 4, Kummer surfaces contain a maximal sequence of 16 skew lines ([8]) so
the bound is optimal. But for d ≥ 5, it is not known if it is sharp.
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3. A smooth octic with 352 lines

The octic we construct is a surface with bioctahedral symmetries. The rough idea is
as follows: If a surface has many symmetries, one can expect that it contains many
lines, since if the surface contains a line then it contains the whole orbit, and if the
symmetry group is big, hopefully this orbit has a big length.

Let G ∈ SO(3,R) be a polyhedral group. Consider the exact sequence:

0 −→ {±1} −→ SU(2)
φ−→ SO(3,R) −→ 0.

The inverse image G̃ := φ−1G is a binary polyhedral group. Now consider the
exact sequence:

0 −→ {±1} −→ SU(2) × SU(2)
σ−→ SO(4,R) −→ 0.

The direct image σ(G̃ × G̃) ⊂ SO(4,R) is a bipolyhedral group. Denote by T ,
O and I respectively the tetrahedral, octahedral and icosahedral group. We shall
make use of the following particular groups:

• G6 = σ(T̃ × T̃ ) of order 288;
• G8 = σ(Õ × Õ) of order 1152;
• G12 = σ(Ĩ × Ĩ) of order 7200.

The polynomial invariants of these groups were studied by Sarti in [11, Section 4].
First note that the quadratic form Q := x2 + y2 + z2 + t2 is an invariant of the
action of these groups.

Theorem (Sarti). For d = 6, 8, 12 there is a one-dimensional family of Gd-
invariant surfaces of degree d. The equation of the family is Sd + λQd/2 = 0.
The base locus of the family consists in 2d lines, d in each ruling of Q. The general
member of each family is smooth and there are exactly five singular surfaces in each
family.

From this theorem immediately follows that each member of the family con-
tains at least 2d lines.

Consider the group G8. Denote by S8 the surface S8 = 0 where:

S8 = x8 + y8 + z8 + t8 + 168x2 y2z2t2

+ 14(x4 y4 + x4z4 + x4t4 + y4z4 + y4t4 + z4t4).

Theorem 3.1. The surface S8 is smooth and contains exactly 352 lines.

Proof. The proof goes as follows: first we introduce Plücker coordinates for the
lines in P3, then we compute explicitly all the lines contained in the surface.
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• Plücker coordinates. Let G(1, 3) be the Grassmannian of lines in P3, or equiva-
lently of 2-planes in C4. Such a line L is given by a rank-two matrix:




a e
b f
c g
d h


 .

The 2-minors (Plücker coordinates):

p12 := a f − be p13 := ag − ce p14 := ah − de

p23 := bg − c f p24 := bh − d f p34 := ch − dg

are not simultaneously zero, and induce a regular map G(1, 3) −→ P5. This map
is injective, and its image is the hypersurface p12 p34 − p13 p24 + p14 p23 = 0. In
order to list once all lines with these coordinates, we inverse the Plücker embedding
in the Plücker stratification:

(1) (2) (3)

p12 = 1 p12 = 0, p13 = 1 p12 = 0, p13 = 0, p14 = 1


1 0
0 1

−p23 p13
−p24 p14







1 0
p23 0
0 1

−p34 p14







1 0
p24 0
p34 0
0 1




(4) (5) (6)

p12 = 0, p13 = 0 p12 = 0, p13 = 0, p14 = 0 p12 = 0, p13 = 0, p14 = 0
p14 = 0, p23 = 1 p23 = 0, p24 = 1 p23 = 0, p24 = 0, p34 = 1


0 0
1 0
0 1

−p34 p24







0 0
1 0

p34 0
0 1







0 0
0 0
1 0
0 1




• Counting the lines. The line L is contained in the surface S8 if and only if the
function (u, v) �→ S8(ua + ve, ub + v f, uc + vg, ud + vh) is identically zero, or
equivalently if all coefficients of this polynomial in u, v are zero. The conditions for
the line to be contained in the surface is then given by a set of polynomial equations
in a, b, c, d, e, f, g, h. In order to count the lines, we restrict the equations to each
Plücker stratum and compute the solutions (this computation is not difficult if left
to SINGULAR [4]).
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1. The stratum p12 = 1. Set p23 = c, p24 = d, p13 = g, p14 = h. The equations
for such a line to be contained in the surface are:

c7g + d7h + 7c3g + 7d3h + 7c4d3h + 7c3gd4 = 0

c6g2 + d6h2 + 3c4d2h2 + 8c3gd3h + 3c2g2d4

+6c2d2 + 3c2g2 + 3d2h2 = 0

c5g3 + d5h3 + c4dh3 + cg3d4 + 6c3gd2h2

+6c2g2d3h + cg3 + dh3 + 6c2dh + 6cgd2 = 0

1 + g4 + 5c4g4 + 5d4h4 + c4 + d4 + c4h4

+g4d4 + 16c3gdh3 + 36c2g2d2h2 + 16cg3d3h

+h4 + 12c2h2 + 12g2d2 + 48cgdh = 0

c3g + d3h + c3gh4 + c3g5 + d3h5 + 6c2g2dh3

+g4d3h + 6cg3d2h2 + 6cgh2 + 6g2dh = 0

3c2g2 + 3d2h2 + 3c2g2h4 + 3g4d2h2 + c2g6

+d2h6 + 8cg3dh3 + 6g2h2 = 0

cg7 + dh7 + 7cg3 + 7dh3 + 7cg3h4 + 7g4dh3 = 0

1 + g8 + h8 + 14g4 + 14h4 + 14g4h4 = 0 .

After simplification of the ideal with SINGULAR (that we do not reproduce here),
the solutions give 320 lines of the kind z = cx + gy, t = dx + hy.

2. The stratum p12 = 0, p13 = 1. Set p23 = b, −p34 = d, p14 = h. The equations
for such a line to be contained in the surface are (after simplification):

d = 0

b4h2 − b2h4 − b2 + h2 = 0

b6 − h6 + 13b2 − 13h2 = 0

h8 + 14h4 + 1 = 0

b2h6 + b4 + 13b2h2 + 1 = 0 .

The solutions give 32 lines of the kind y = bz, t = hx , since there are eight
possible values for h, and for each of them there are four values of b.

An easy computation shows that the other strata contain no line, so there are exactly
352 lines on the surface.
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Remark 3.2. To our knowledge, this is the best example so far of an octic sur-
face with many lines. This improves widely the bound 256 of Caporaso-Harris-
Mazur [3].

Consider now the group G6. We take:

S6 = x6 + y6 + z6 + t6 + 15(x2 y2z2 + x2 y2t2 + x2z2t2 + y2z2t2).

Proposition 3.3. The surface 8S6 − 5Q3 = 0 contains exactly 132 lines.

This result can be shown in a similar way as in the G8 case. We do not re-
produce the computation since there are sextics with more lines (see Section 4.4),
but this shows the existence of a sextic with 132 lines. In Section 4.4 we shall give
more examples of constructions of symmetric surfaces.

4. Surfaces of the kind φ(x, y) = ψ(z, t)

Consider a smooth surface S given by an equation φ(x, y) = ψ(z, t) for two ho-
mogeneous polynomials φ, ψ of degree d. Segre gives a complete description of
the possible and maximal numbers of lines in the case d = 4 ([13, Section VIII]).
Caporaso-Harris-Mazur in [3, Lemma 5.1] generalized the argument to all degrees
and gave a lower bound for the number of lines on such surfaces. We recall briefly
the argument in order to establish the exactness of their result and conclude with
the maximal numbers of lines for such surfaces.

4.1. Configuration of the lines

Let Z(φ), respectively Z(ψ) denote the set of distinct zeros of φ(x, y), respectively
ψ(z, t) in P1.

Proposition 4.1. The number Nd of lines on S is exactly Nd = d(d + αd) where
αd is the order of the group of isomorphisms of P1 mapping Z(φ) to Z(ψ).

Sketch of proof. Let L be the line z = t = 0 and L ′ be the line x = y = 0. Set
Z(φ) = S ∩ L = {P1, . . . , Pd} and Z(ψ) = S ∩ L ′ = {P ′

1, . . . , P ′
d}. One shows

easily (see [3, 13]) that:
• Each line Li, j joining a Pi to a P ′

j is contained in S: this gives d2 lines.
• Each line contained in S and intersecting L and L ′ is one of the previous lines.
• Let D be a line contained in S and not intersecting L . Then D does not intersect
L ′ (and vice-versa) and equations for such a line D are:{

x = αz + βt

y = γ z + δt .

These equations define a linear isomorphism between L ′ and L inducing a bijection
between Z(ψ) and Z(φ).
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• Conversely, let σ : L ′ → L be an isomorphism mapping the points P ′
j to the

points Pi , and

(
α β

γ δ

)
a matrix defining σ . Consider the smooth quadric Qσ :

x(γ z + δt) − y(αz + βt) = 0. Its first ruling is the family of lines (p, σ (p)) for
p ∈ L ′. Its second ruling consists in the family of lines of equations

I[a:b] :

{
ax − b(αz + βt) = 0

ay − b(γ z + δt) = 0

for [a : b] ∈ P1. In each ruling, the lines are disjoint to each other, and each line
of one ruling intersects each line of the other ruling. Since the intersection S ∩ Q
contains exactly the d different lines (P ′

j , σ (P ′
j )) of the first ruling, it contains also

d lines of the second ruling. To see that these lines are really distinct we proceed as
follows. Denoting by Ud the group of d-th roots of the unit, the group Ud ×Ud acts
on P3 by (ξ, η) · [x : y : z : t] = [ξ x : ξ y : ηz : ηt], leaving the surface S globally
invariant. Since (ξ, η) · I[a:b] = I[ξ−1a:η−1b], each line of the second ruling produces
a length d orbit through the action.
• Therefore, each isomorphism σ : L ′ → L mapping Z(ψ) to Z(φ) gives exactly
d lines. Denote by αd the number of isomorphims σ : L ′ → L mapping Z(ψ) to
Z(φ). The exact number of lines contained in the surface S is: Nd = d2 +αdd.

4.2. Possible numbers of lines

We describe now the possible values of αd . One has α3 = 6. For d ≥ 4, assuming
that there is at least one isomorphism σ , we are lead to the problem of determining
the possible groups �d of automorphisms of P1 acting on a given set of d ≥ 4
points on P1. The following classification is easy to obtain:

(1) �d = {id}. This forces d �= 4.
(2) �d is a cyclic group: �d ∼= Z/kZ (k ≥ 2). The action on P1 has two fix points

so d = α + βk with α ∈ {0, 1, 2} and β ≥ 1, with the restrictions:

◦ If α = 0 then β ≥ 3.
◦ If α = 1 then d = 1 + βk ≥ 5, with β ≥ 2 if k = 3.
◦ If α = 2 then β ≥ 3.

(3) �d is a dihedral group: �d ∼= Z/kZ � Z/2Z (k ≥ 2). There is one length 2
orbit and one length k orbit so d = 2α + βk + γ 2k with α, β ∈ {0, 1}, γ ≥ 0
and if γ = 0, α = 1 and β = 1 then k �= 2, 4.

(4) �d is the tetrahedral group T . There are two length four orbits and one length
six orbit so d = 4α + 6β + 12γ with α ∈ {0, 1, 2}, β ∈ {0, 1}, γ ≥ 0. The only
possibilities are:

γ = 0, β = 0, α = 1; γ = 0, β = 1, α = 1;
γ = 0, β = 1, α = 2; γ �= 0.
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(5) �d is the octahedral group O. There is one length six orbit, one length eight
orbit and one length twelve orbit, so d = 6α + 8β + 12γ + 24δ with α, β, γ ∈
{0, 1} and δ ≥ 0.

(6) �d is the icosahedral group I . There is one length twelve orbit, one length 20
orbit and one length 30 orbit, so d = 12α+20β+30γ +60δ with α, β, γ ∈ {0, 1}
and δ ≥ 0.

4.3. Maximal number of lines

As a corollary of Proposition 4.1 and the preceding discussion of cases, we get the
following maximality result:

Proposition 4.2. The maximal numbers of lines on S are:

• Nd = 3d2 for d ≥ 3, d �= 4, 6, 8, 12, 20;
• N4 = 64, N6 = 180, N8 = 256, N12 = 864, N20 = 1600.

Proof. Looking up at the discussion above, it appears that αd = 2d is maximal
when the group of automorphisms can not be a group T , O or I and that α4 = 12,
α6 = α8 = 24 and α12 = α20 = 60 are maximal. For other values of d, if the
automorphism group is T , respectively O, respectively I then the number of lines
is:

d2 + 12d, respectively d2 + 24d, respectively d2 + 60d

and these numbers are bigger than 3d2 only if

d < 6, respectively d < 12, respectively d < 30.

So it just remains to check that the degree d = 10 is not possible for O and I and
that the degrees d = 14, 16, 18, 22, 24, 26, 28 are not possible for I , that is we
cannot decompose such a d as a sum of lengths of orbits for the groups O or I .
This is clear with the restrictions on the numbers of orbits of each type.

4.4. Examples

1. For d generic, the Fermat surface xd − yd = zd − td gives the best example for
surfaces of the kind φ(x, y) = ψ(z, t).

2. For d =4, �4 ∈ {∅, D2, D4,T }: the possible numbers of lines are 16, 32, 48, 64.
This agrees with Segre’s result (Section 2).

3. For d = 5, �5 ∈ {∅, {id}, C4, D3, D5}: the possible numbers of lines are
25, 30, 45, 55, 75. The general bound of Segre gives 147.

4. For d = 6, �6 ∈ {∅, {id}, C2, D2, D3, D6,O}: the possible numbers of lines are
36, 42, 48, 60, 72, 108, 180. The general bound of Segre gives 240.

Remark 4.3. It is an interesting related problem to find surfaces of any degree d
with as many real lines as possible. For surfaces of the kind φ(x, y) = φ(z, t), if
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the zeros of φ are all real, one gets already d2 real lines. Then, for each isomophism
in the group �d represented by a real matrix, one gets one more real line if d is odd
and two more real lines if d is even.

In Section 3 we constructed an octic with bipolyhedral symmetries and 352
lines. The surfaces of the kind φ(x, y) = φ(z, t) produce good examples of sur-
faces with polyhedral symmetries. Set � the group of isomorphisms of P1 permut-
ing the zeros of φ in P1: φ is a projective invariant for the action of � on C2. This
implies that the surface φ(x, y) = φ(z, t) is invariant for the diagonal action of �

given by g(x, y, z, t) = (g(x, y), g(z, t)) for g ∈ �. Its number of lines is given
by Proposition 4.1. Looking at the projective invariant polynomials of the groups
O,I in Klein [6, I.2, Section 11-12-13], one gets:

• A surface of degree six with octahedral symmetries and 180 lines:

φ(x, y) = xy(x4 − y4).

• A surface of degree eight with octahedral symmetries and 256 lines:

φ(x, y) = x8 + 14x4 y4 + y8.

• A surface of degree twelve with octahedral symmetries and 432 lines:

φ(x, y) = x12 − 33x8 y4 − 33x4 y8 + y12.

• A surface of degree twelve with icosahedral symmetries and 864 lines:

φ(x, y) = xy(x10 + 11x5 y5 − y10).

• A surface of degree 20 with icosahedral symmetries and 1600 lines:

φ(x, y) = −(x20 + y20) + 228(x15 y5 − x5 y15) − 494x10 y10.

• A surface of degree 30 with icosahedral symmetries and 2700 lines:

φ(x, y) = (x30 + y30) + 522(x25 y5 − x5 y25) − 10005(x20 y10 + x10 y20).

5. Sequences of skew lines

In [10], Rams considers the surfaces xd−1 y+yd−1z+zd−1t+td−1x = 0 and proves
that they contain a family of d(d − 2) + 2 skew lines for any d. In [9, Example
2.3], he also gives an example of a surface of degree five containing a sequence
of 19 skew lines. We generalize his result, improving the number of skew lines to
d(d − 2) + 4 in the case d ≥ 7 and gcd(d, d − 2) = 1.

Consider the surface Rd : xd−1 y + xyd−1 + zd−1t + ztd−1 = 0. By our study
in Section 4, this surface contains exactly 3d2 − 4d lines if d �= 6 and 180 lines for
d = 6. We prove:
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Theorem 5.1. The surface Rd with gcd(d, d − 2) = 1 contains a sequence of
d(d − 2) + 4 disjoint lines.

Proof. Denote by ε, γ the primitive roots of the unit of degrees d − 2 and d, and let
η := εlγ s , with 0 ≤ l ≤ d − 3, 0 ≤ s ≤ d − 1. Since gcd(d, d − 2) = 1 we have
d(d − 2) such η. Now consider the points

(0 : 1 : 0 : −ηd−1), (−η : 0 : 1 : 0)

then the line through the two points is

Cl,s : (−ηλ : µ : λ : −ηd−1µ)

An easy computation shows that these lines are contained in Rd and are d(d − 2).
This form a set of d(d − 2) + 4 skew lines together with the lines

{x = 0, z + εt = 0}, {y = 0, z + t = 0},
{z = 0, x + εy = 0}, {t = 0, x + y = 0}.

6. Surfaces of the kind td = f (x, y, z)

Let C : f (x, y, z) = 0 be a smooth plane curve defined by a homogeneous polyno-
mial f of degree d and consider the smooth surface S in P3 given by the equation
td = f (x, y, z). Set p = [0 : 0 : 0 : 1] ∈ P3. The projection (P3 − {p}) → P2,
[x : y : z : t] �→ [x : y : z] induces a d-covering π : S → P2 ramified along
the curve C. Recall that a point x ∈ C is a d-point (or total inflection point) if the
intersection multiplicity of C and its tangent line at x is equal to d. The following
lemma is easy to prove:

Lemma 6.1.

1. Assume L is a line contained in S . Then π(L) is a line.
2. Let x ∈ C and L be the tangent at C in x, then the preimage π−1(L) consists in

d different lines contained in S if and only if x is a d-point.
3. Let L be a line in P2. Then π−1(L) contains a line if and only if L is tangent to

C at a d-point.

Sketch of proof.

(2) Assume that x is a d-point. Let � be a line of equation δ = 0 intersecting L at x .
Then d ·(�·L) = (C ·L) so up to a scalar factor f|L = δd|L

: the covering restricted

to L is trivial and π−1(L) consists in d lines. Conversely, if the covering splits,
there exists a section γ ∈ H0(L ,OL(1)) such that γ d = f|L ∈ H0(L ,OL(d))

so L intersects C at x with multiplicity d.
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(3) Assume that π−1(L) contains a line and that L is given by a linear function
z = l(x, y). The equation td − f (x, y, l(x, y)) = 0 of π−1(L) factorizes by
t−w(x, y) where w(x, y) is a linear form, so f (x, y, l(x, y)) = w(x, y)d hence
the preimage consists in d lines. This implies that the covering is trivial over L
so by (6.1) x is a d-point.

We deduce the number of lines contained in such surfaces:

Proposition 6.2. Assume that the curve C has β total inflection points. Then the
surface S contains exactly β · d lines. In particular, it contains no more than 3d2

lines.

Proof. The first assertion follows directly from the Lemma 6.1. For the second one,
the inflection points are the intersections of C with its Hessian curve H of degree
3(d − 2) and at a total inflection point the intersection multiplicity of C and H is
d − 2, so by Bezout one gets β ≤ 3d.

Example 6.3.

• Each cubic curve has nine inflection points, so the induced cubic surface has 27
lines.

• The Fermat curves xd +yd +zd = 0 have 3d total inflection points so the Fermat
surfaces have 3d2 lines.

7. Final remarks

7.1. An interpolation

As we mentioned in Section 2, the uniform bound (d − 2)(11d − 6) of Segre is too
big already in degree four. We propose here a lower polynomial, which interpolates
all maximal numbers of lines known so far in degrees 4, 6, 8, 12, including the octic
of Section 3. Although there is no reason for this interpolation to be a maximal
bound, it seems reasonable to expect that an effective construction of a surface with
this number of lines is possible in all degrees.

Let S be a smooth surface of degree d ≥ 3 and C a line contained in S . Let
|H | be the linear system of planes H passing through C . Then H ∩ S = C ∪ �

where � is a curve of degree d − 1. The system |�| is described by Segre in [12]: it
is base-point free and any curve � does not contain C as a component. Then:

Proposition.(Segre) Either each curve � intersects C in d − 1 points which are
inflections for �, or the points of C each of which is an inflection for a curve � are
8d − 14 in number. In particular, in this case C is met by no more than 8d − 14
lines lying on S .

Following Segre, C is called a line of the second kind if it intersects each � in
d − 1 inflections. A generalization of Segre’s argument in [12, Section 9] gives the
following result:
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Proposition 7.1. Assume that S contains d coplanar lines, none of them of the
second kind. Then S contains at most d(7d − 12) lines.

Proof. Let P be the plane containing these d distinct lines. Then they are the com-
plete intersection of P with S . Hence each other line on S must intersect P in some
of the lines. By the previous proposition, each of the d lines in the plane meets at
most 8d − 14 lines, so 8d − 14 − (d − 1) lines not on the plane. The total number
of lines is at most d + d(7d − 13) = d(7d − 12).

7.2. Number of rational points on a plane curve

We give an application of our results to the universal bound conjecture, following
Caporaso-Harris-Mazur [3]:

Universal bound conjecture. Let g ≥ 2 be an integer. There exists a number
N (g) such that for any number field K there are only finitely many smooth curves
of genus g defined over K with more than N (g) K -rational points.

As mentioned in [3] an interesting way to find a lower bound of N (g), or of
the limit:

N := lim sup
g→∞

N (g)

g

is to consider plane sections of surfaces with many lines. Indeed, over the common
field K of definition of the surface and its lines, a generic plane section is a curve
containing at least as many K -rational points as the number of lines. In particular,
they show that N (21) ≥ 256. Since we obtain an octic surface with 352 lines and a
generic plane section of this surface is a smooth curve of genus 21, we get:

Corollary 7.2. N (21) ≥ 352.

As we remarked in Section 7.1, it seems to be possible to construct surfaces
with d(7d − 12) lines. This would improve the lower bound of N (g) for many g.
In particular, this would improve the known estimate N ≥ 8 to N ≥ 14.
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