We investigate Laplace type operators in the Euclidean space. We give a purely algebraic proof of the theorem on existence and uniqueness (in the space of polynomial forms) of the Dirichlet boundary problem for a Laplace type operator and give a method of determining the exact solution to that problem. Moreover, we give a decomposition of the kernel of a Laplace type operator into -irreducible subspaces.
@article{ASNSP_2007_5_6_1_53_0, author = {Koz{\l}, Wojciech}, title = {Laplace type operators: {Dirichlet} problem}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {53--80}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 6}, number = {1}, year = {2007}, mrnumber = {2341515}, zbl = {1185.35039}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2007_5_6_1_53_0/} }
TY - JOUR AU - Kozł, Wojciech TI - Laplace type operators: Dirichlet problem JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2007 SP - 53 EP - 80 VL - 6 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2007_5_6_1_53_0/ LA - en ID - ASNSP_2007_5_6_1_53_0 ER -
Kozł, Wojciech. Laplace type operators: Dirichlet problem. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 6 (2007) no. 1, pp. 53-80. http://archive.numdam.org/item/ASNSP_2007_5_6_1_53_0/
[1] Quasiconformal deformations and mappings in , J. Anal. Math. 30 (1976), 74-97. | MR | Zbl
,[2] “Harmonic Function Theory”, Springer-Verlag, New York, 2001. | MR | Zbl
, and ,[3] Representations of compact groups and spherical harmonics, Enseign. Math. 14 (1969), 121-175. | MR | Zbl
and ,[4] Harmonic analysis of the de Rham complex on the sphere, J. Reine Angew. Math. 398 (1989), 130-143. | MR | Zbl
[5] “Natural Operations in Differential Geometry”, Springer-Verlag, Berlin-Heidelberg, 1993. | MR | Zbl
, and ,[6] Group theoretic remarks on Riesz system on balls, Proc. Amer. Math. Soc. 85 (1982), 200-205. | MR | Zbl
and ,[7] “Lectures on Elliptic and Parabolic Equations in Hölder Spaces”, Graduate Studies in Mathematics, Vol. 12, American Mathematical Society, Providence, RI, 1996. | MR | Zbl
,[8] Boundary problems for the Ahlfors operator, (in Polish), Ph.D. Thesis, Łódź University, (1996), 1-55.
,[9] “Geometry of Quasiconformal Deformations of Riemannian Manifolds”, Łódź University Press, 1997.
,[10] Ricci curvature and quasiconformal deformations of a Riemannian manifold, Manuscripta Math. 66 (1989), 113-127. | MR | Zbl
,[11] Rotation invariant differential equation for vector fields, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 9, (1982), 160-174. | Numdam | MR | Zbl
,[12] “Fourier Analysis on Euclidean Spaces”, Princeton University Press, 1971. | MR | Zbl
and ,[13] Differential operators of gradient type associated with spherical harmonics, Ann. Polon. Math. 53 (1991), 161-183. | MR | Zbl
,[14] Eigenschwingungen eines beliebig gestatleten elastischen Korpers, Rend. Circ. Mat. Palermo 39 (1915), 1-50. | JFM
,[15] “Integral Formulas in Riemannian Geometry”, Marcel Dekker INC, New York, 1970. | MR | Zbl
,