Holomorphic line bundles and divisors on a domain of a Stein manifold

Makoto Abe

Dedicated to Professor Yoshihiro Mizuta on his sixtieth birthday

Abstract. Let *D* be an open set of a Stein manifold *X* of dimension *n* such that $H^k(D, \mathcal{O}) = 0$ for $2 \le k \le n-1$. We prove that *D* is Stein if and only if every topologically trivial holomorphic line bundle *L* on *D* is associated to some Cartier divisor \mathfrak{d} on *D*.

Mathematics Subject Classification (2000): 32E10 (primary); 32L10, 32Q28 (secondary).

1. Introduction

For every holomorphic line bundle *L* on a reduced Stein space *X* there exists a global holomorphic section $\sigma \in \Gamma(X, \mathcal{O}(L))$ such that the zero set $\{\sigma = 0\}$ is nowhere dense in *X*. Therefore *L* is associated to the positive Cartier divisor div (σ) on *X* (see Gunning [9, pages 122–125]).

Conversely the author [1, Theorem 3] proved that an open set D of a Stein manifold X of dimension two is Stein if every holomorphic line bundle L on D is associated to some (not necessarily positive) Cartier divisor ϑ on D. Moreover Ballico [4, Theorem 1] proved that an open set D of a Stein manifold X of dimension more than two of the form $D = \{\varphi < c\}$, where $\varphi : X \to \mathbb{R}$ is a weakly 2-convex function of class \mathscr{C}^2 in the sense of Andreotti-Grauert, is Stein if every holomorphic line bundle L on D is associated to some Cartier divisor ϑ on D.

In this paper we prove that an open set D of a Stein manifold X of dimension n such that $H^k(D, \mathcal{O}) = 0$ for $2 \le k \le n - 1$ is Stein if every topologically trivial holomorphic line bundle L on D is associated to some Cartier divisor \mathfrak{d} on D (see Theorem 4.3). This generalizes both results above (see Corollaries 4.4 and 4.5).

The proof is by induction on $n = \dim X$ and the induction hypothesis is applied to the complex subspace $(Y, (\mathcal{O}_X / f \mathcal{O}_X) |_Y)$, where $f \in \mathcal{O}_X(X)$ and

Partly supported by the Grant-in-Aid for Scientific Research (C) no. 18540188, Japan Society for the Promotion of Science.

Received July 14, 2006; accepted in revised form May 7, 2007.

 $Y := \{[f] = 0\}$. Therefore it is inevitable to consider complex spaces which are not necessarily reduced (see Theorem 4.1).

ACKNOWLEDGEMENT. The author would like to express his gratitude to the referee for his/her crucial remarks and valuable comments on earlier versions of the paper.

2. Preliminaries

Throughout this paper complex spaces are always assumed to be second countable. We always denote by \mathcal{O} without subscript the reduced complex structure sheaf of an arbitrary complex space. In other words we always set $\mathcal{O} := \mathcal{O}_X / \mathcal{N}_X$ for a complex space (X, \mathcal{O}_X) , where \mathcal{N}_X is the nilradical of the complex structure sheaf \mathcal{O}_X .

Let (X, \mathcal{O}_X) be a (not necessarily reduced) complex space and (red, red) : $(X, \mathcal{O}) \to (X, \mathcal{O}_X)$ the reduction map. We denote by [f] the valuation $x \mapsto f_x + \mathfrak{m}_x \in \mathcal{O}_{X,x}/\mathfrak{m}_x = \mathbb{C}, x \in U$, for every $f \in \mathcal{O}_X(U)$, where U is an open set of X. Then the assignment $f \mapsto [f]$ is identified with red : $\mathcal{O}_X(U) \to \mathcal{O}(U)$ (see Grauert-Remmert [8, page 87]).

Let *X* be a reduced complex space and $e : \mathcal{O} \to \mathcal{O}^*$ the homomorphism of sheaves on *X* defined by $e_x(f_x) := \exp(2\pi\sqrt{-1}f_x)$ for every $f_x \in \mathcal{O}_x$ and $x \in X$, where \mathcal{O}^* denotes the multiplicative sheaf of invertible germs of holomorphic functions. Then *e* induces the homomorphism $e^* : H^1(X, \mathcal{O}) \to H^1(X, \mathcal{O}^*)$. As usual we identify the cohomology group $H^1(X, \mathcal{O}^*)$ with the set of holomorphic line bundles on *X*.

Let ϑ be a Cartier divisor on a reduced complex space *X* defined by the meromorphic Cousin-II distribution $\{(U_i, m_i)\}_{i \in I}$ on *X* (see Gunning [9, page 121]). We denote by $[\vartheta]$ the holomorphic line bundle on *X* defined by the cocycle $\{m_i/m_j\} \in Z^1(\{U_i\}_{i \in I}, \mathcal{O}^*)$ and we say that $[\vartheta]$ is the *holomorphic line bundle associated to* ϑ . We say that ϑ is *positive* (or *effective*) if ϑ can be defined by a holomorphic Cousin-II distribution.

Let (X, \mathcal{O}_X) be a (not necessarily reduced) complex space and D an open set of X. Then D is said to be *locally Stein* at a point $x \in \partial D$ if there exists a neighborhood U of x in X such that the open subspace $(D \cap U, \mathcal{O}_X|_{D \cap U})$ is Stein.

Throughout this paper we use the following notation:

$$\Delta(r) := \{t \in \mathbb{C} \mid |t| < r\} \text{ for } r > 0, \quad \Delta := \Delta(1),$$

$$P(n,\varepsilon) := \Delta(1+\varepsilon)^n, \quad \text{and}$$

$$H(n,\varepsilon) := \Delta^n \cup \left\{ (z_1, z_2, \dots, z_n) \in \mathbb{C}^n \mid 1-\varepsilon < |z_1| < 1+\varepsilon,$$

$$|z_2| < 1+\varepsilon, \ |z_3| < 1+\varepsilon, \ \dots, \ |z_n| < 1+\varepsilon \right\}$$

for $n \ge 2$ and $0 < \varepsilon < 1$.

The pair $(P(n, \varepsilon), H(n, \varepsilon))$ is said to be a *Hartogs figure*. We have the following lemma which characterizes a Stein open set of \mathbb{C}^n .

Lemma 2.1 (Kajiwara-Kazama [10, Lemmas 1 and 2]). Let D be an open set of \mathbb{C}^n . Then the following two conditions are equivalent.

- (1) D is Stein.
- (2) There do not exist a biholomorphic map $\varphi : \mathbb{C}^n \to \mathbb{C}^n$, $\varepsilon \in (0, 1)$ and $b = (b_1, b_2, \dots, b_n) \in \mathbb{C}^n$ such that $\varphi(H(n, \varepsilon)) \subset D$, $|b_1| \le 1 \varepsilon$, $\max_{2 \le \nu \le n} |b_\nu| = 1$ and $\varphi(b) \in \partial D$.¹

3. Lemmas

In this section we denote by $\Phi_{(X, \mathcal{O}_X)}$ the composition of the induced homomorphisms

$$H^1(X, \mathscr{O}_X) \xrightarrow{\operatorname{red}^*} H^1(X, \mathscr{O}) \xrightarrow{e^*} H^1(X, \mathscr{O}^*)$$

for every complex space (X, \mathcal{O}_X) .

Lemma 3.1. Let (X, \mathcal{O}_X) be a Stein space of pure dimension 2 and D an open set of X. Let $(\theta, \tilde{\theta}) : (X, \mathcal{O}_X) \to \mathbb{C}^2$ be a holomorphic map, R and W open sets of $X, \varepsilon \in (0, 1)$ and $b = (b_1, b_2) \in \mathbb{C}^2$ such that $R \subseteq W \subset X \setminus \text{Sing}(X, \mathcal{O}_X), \theta(W)$ is an open set of \mathbb{C}^2 , the restriction $\theta|_W : W \to \theta(W)$ is biholomorphic, $\theta(R) =$ $P(2, \varepsilon), (\theta|_W)^{-1}(H(2, \varepsilon)) \subset D, |b_1| \leq 1 - \varepsilon, |b_2| = 1$ and $(\theta|_W)^{-1}(b) \in \partial D$. Then there exists a cohomology class $\alpha \in H^1(D, \mathcal{O}_X|_D)$ such that the holomorphic line bundle $\Phi_{(D, \mathcal{O}_X|_D)}(\alpha)|_{D\cap R}$ on $D \cap R$ is not associated to any Cartier divisor on $D \cap R$.

Proof. Let $\theta_{\nu} := \tilde{\theta}_{z_{\nu}}$ for $\nu = 1, 2$, where z_1 and z_2 are the coordinates of \mathbb{C}^2 . Let $E_{\nu} := \{[\theta_{\nu}] \neq b_{\nu}\}$ for $\nu = 1, 2$. Since $(E_{\nu}, \mathscr{O}_X|_{E_{\nu}})$ is Stein and $1/([\theta_{\nu}] - b_{\nu}) \in \mathscr{O}(E_{\nu})$, there exists $u_{\nu} \in \mathscr{O}_X(E_{\nu})$ such that $[u_{\nu}] = 1/([\theta_{\nu}] - b_{\nu})$ on E_{ν} for $\nu = 1, 2$. Let $T := \{|[\theta_1]| < 1 + \varepsilon\}$ and $T_1 := \{|[\theta_1]| < 1 + \varepsilon, |[\theta_2]| > 1 + \varepsilon/2\} \cup (T \setminus \overline{R})$. Then $(T, \mathscr{O}_X|_T)$ is Stein and $\{R, T_1\}$ is an open covering of T. Since $H^1(\{R, T_1\}, \mathscr{O}_X|_T) = 0$ and $R \cap T_1 \subset E_2$, there exist $v_0 \in \mathscr{O}_X(R) = \mathscr{O}(R)$ and $v_1 \in \mathscr{O}_X(T_1)$ such that $u_2 = v_1 - v_0$ on $R \cap T_1$. Let $F := (E_2 \cap R) \cup T_1$. Let $v \in \mathscr{O}_X(F)$ be defined by $v = v_0 + u_2$ on $E_2 \cap R$ and $v = v_1$ on T_1 . Let $D_1 := D \cap E_1$ and $D_2 := D \cap ((E_2 \cap T) \cup (T \setminus \overline{R}))$. Then $\{D_1, D_2\}$ is an open covering of D and $D_1 \cap D_2 \subset E_1 \cap F$. Let $\alpha \in H^1(\{D_1, D_2\}, \mathscr{O}_X|_D)$ be the cohomology class defined by $(u_1v)|_{D_1 \cap D_2} \in \mathscr{O}_X(D_1 \cap D_2) = Z^1(\{D_1, D_2\}, \mathscr{O}_X|_D)$. Then by

¹ An open set D of \mathbb{C}^n satisfies condition (2) in Lemma 2.1 if and only if D is *p*-convex in the sense of Kajiwara-Kazama [10, page 2]. Note that the sentence " $\varphi(D)$ is a subset of Ω ..." should be " $\varphi(\mathring{D})$ is a subset of Ω ..." in the definition of a *boundary mapping* in Kajiwara-Kazama [10, page 2].

the argument in Abe [1, page 271] the holomorphic line bundle $\Phi_{(D, \mathscr{O}_X|_D)}(\alpha)|_{D \cap R}$ is not associated to any Cartier divisor on $D \cap R$.

A zero set N(l) of a linear function $l(z_1, z_2, ..., z_n) = \sum_{k=1}^n a_k z_k + b$ on \mathbb{C}^n , where $a_1, a_2, ..., a_n, b \in \mathbb{C}$ and $(a_1, a_2, ..., a_n) \neq (0, 0, ..., 0)$, is said to be a *hyperplane* of \mathbb{C}^n .

Lemma 3.2. Let D be an open set of \mathbb{C}^n and H a hyperplane of \mathbb{C}^n . Let $Z := D \cap H$. Then for every Cartier divisor \mathfrak{d} on D there exists a Cartier divisor \mathfrak{d}' on D such that the support $|\mathfrak{d}'|$ of \mathfrak{d}' is nowhere dense in Z and $[\mathfrak{d}]|_Z = [\mathfrak{d}'|_Z]$.

Proof. As usual we identify a Cartier divisor on a complex manifold with a Weil divisor. Let $\mathfrak{d} = \sum_{\lambda \in \Lambda} \alpha_{\lambda} A_{\lambda}$, where A_{λ} is an irreducible analytic set of dimension n-1 and $\alpha_{\lambda} \in \mathbb{Z}$ for every $\lambda \in \Lambda$, be the expression of \mathfrak{d} as a Weil divisor. Let Λ'' be the set of $\lambda \in \Lambda$ such that A_{λ} is a connected component of Z. Let $\Lambda' := \Lambda \setminus \Lambda''$, $\mathfrak{d}' := \sum_{\lambda \in \Lambda'} \alpha_{\lambda} A_{\lambda}$ and $\mathfrak{d}'' := \sum_{\lambda \in \Lambda''} \alpha_{\lambda} A_{\lambda}$. Then the support $|\mathfrak{d}'| = \bigcup_{\lambda \in \Lambda'} A_{\lambda}$ of \mathfrak{d}' is nowhere dense in Z. Let $\{Z_{\mu}\}_{\mu \in M}$, where $M \subset \mathbb{N}$, be the set of connected components of Z. There exists a system $\{U_{\mu}\}_{\mu \in M}$ of mutually disjoint open sets of D such that U_{μ} is a neighborhood of Z_{μ} for every $\mu \in M$. Let $U_{0} := D \setminus Z$. We choose a non-constant linear function l on \mathbb{C}^{n} such that $\{l = 0\} = H$. If there exists $\lambda \in \Lambda''$ such that $Z_{\mu} = A_{\lambda}$, then let $\beta_{\mu} := \alpha_{\lambda}$. Otherwise let $\beta_{\mu} := 0$. Then \mathfrak{d}'' as a Cartier divisor is defined by the system $\{(U_{0}, 1)\} \cup \{(U_{\mu}, l^{\beta_{\mu}})\}_{\mu \in M}$. It follows that $[\mathfrak{d}'']$ is holomorphically trivial on $U := \bigcup_{\mu \in M} U_{\mu}$. Since U is a neighborhood of Z in D, the restriction $[\mathfrak{d}'']|_{Z}$ is also holomorphically trivial. Then we have that

$$[\mathfrak{d}]|_{Z} = [\mathfrak{d}' + \mathfrak{d}'']|_{Z} = ([\mathfrak{d}'] \otimes [\mathfrak{d}''])|_{Z} = [\mathfrak{d}']|_{Z} \otimes [\mathfrak{d}'']|_{Z} = [\mathfrak{d}'|_{Z}]. \qquad \Box$$

A complex space (X, \mathcal{O}_X) is said to be *Cohen-Macaulay* if the local \mathbb{C} -algebra $\mathcal{O}_{X,x}$ is Cohen-Macaulay for every $x \in X$ (see Raimondo-Silva [12]).

Lemma 3.3. Let (X, \mathcal{O}_X) be a Cohen-Macaulay Stein space of pure dimension $n \geq 2$. Let D be an open set of X such that $H^k(D, \mathcal{O}_X|_D) = 0$ for $2 \leq k \leq n-1$. Let $(\theta, \tilde{\theta}) : (X, \mathcal{O}_X) \to \mathbb{C}^n$ be a holomorphic map, R and W open sets of X, $\varepsilon \in (0, 1)$ and $b = (b_1, b_2, \ldots, b_n) \in \mathbb{C}^n$ such that $R \Subset W \subset X \setminus \operatorname{Sing}(X, \mathcal{O}_X)$, $\theta(W)$ is an open set of \mathbb{C}^n , the restriction $\theta|_W : W \to \theta(W)$ is biholomorphic, $\theta(R) = P(n, \varepsilon), (\theta|_W)^{-1} (H(n, \varepsilon)) \subset D, |b_1| \leq 1 - \varepsilon, \max_{2 \leq \nu \leq n} |b_\nu| = 1$ and $(\theta|_W)^{-1}(b) \in \partial D$. Then there exists a cohomology class $\alpha \in H^1(D, \mathcal{O}_X|_D)$ such that the holomorphic line bundle $\Phi_{(D, \mathcal{O}_X|_D)}(\alpha)|_{D\cap R}$ on $D \cap R$ is not associated to any Cartier divisor on $D \cap R$.

Proof. The proof proceed by induction on $n = \dim X$. By Lemma 3.1 the assertion is true if n = 2. We consider the case when $n \ge 3$. Let $\theta_{\nu} := \tilde{\theta} z_{\nu}$ for $\nu =$ 1, 2, ..., n, where $z_1, z_2, ..., z_n$ are the coordinates of \mathbb{C}^n . We replace W by the connected component of W which contains \overline{R} . Let X_0 be the irreducible component of X which contains W. Since (X, \mathcal{O}_X) is Stein, there exists $f \in \mathcal{O}_X(X)$ such that $[f] = [\theta_n] - b_n$ on X_0 and $[f] \neq 0$ on any irreducible component of X. Let $Y := \{[f] = 0\} = \text{Supp}(\mathcal{O}_X / f \mathcal{O}_X)$ and $\mathcal{O}_Y := (\mathcal{O}_X / f \mathcal{O}_X)|_Y$. By the active lemma (see Grauert-Remmert [8, page 100]) we have that

$$\dim \mathcal{O}_{X,x}/f_x \mathcal{O}_{X,x} = \dim_x Y = n - 1 = \dim \mathcal{O}_{X,x} - 1$$

for every $x \in Y$. Therefore f_x is not a zero divisor of $\mathcal{O}_{X,x}$ for every $x \in Y$ and (Y, \mathcal{O}_Y) is a Cohen-Macaulay Stein space of pure dimension n - 1 (see Grauert-Remmert [6, page 141] or Serre [15, page 85]). Let $m : \mathcal{O}_X \to \mathcal{O}_X$ be the homomorphism defined by $m_x(h_x) := f_x h_x$ for every $h_x \in \mathcal{O}_{X,x}$ and $x \in X$. Since the sequence

$$0 \to \mathcal{O}_X \xrightarrow{m} \mathcal{O}_X \xrightarrow{\iota} \mathcal{O}_X / f \mathcal{O}_X \to 0$$

is exact, we have the long exact sequence of cohomology groups

$$\cdots \to H^k(D, \mathscr{O}_X|_D) \to H^k(D \cap Y, \mathscr{O}_Y|_{D \cap Y}) \to H^{k+1}(D, \mathscr{O}_X|_D) \to \cdots$$

Since by assumption $H^k(D, \mathcal{O}_X|_D) = 0$ for $2 \le k \le n-1$, we have that $H^k(D \cap Y, \mathcal{O}_X|_{D \cap Y}) = 0$ for $2 \le k \le n-2$ and that the homomorphism $\tilde{\iota}^* : H^1(D, \mathcal{O}_X|_D) \to H^1(D \cap Y, \mathcal{O}_Y|_{D \cap Y})$ is surjective. Let $(\theta', \tilde{\theta'}) : (Y, \mathcal{O}_Y) \to \mathbb{C}^{n-1}$ be the holomorphic map such that $\tilde{\theta'}_{z_v} = (\tilde{\iota}\theta_v)|_Y$ for v = 1, 2, ..., n-1 (see Grauert-Remmert [8, page 22]). Let $R' := R \cap Y, W' := W \cap Y$ and $b' := (b_1, b_2, ..., b_{n-1})$. Then $\theta(x) = (\theta'(x), b_n)$ for every $x \in W', R' \in W' \subset Y \setminus \operatorname{Sing}(Y, \mathcal{O}_Y), \theta'(W')$ is an open set of \mathbb{C}^{n-1} and the restriction $\theta'|_{W'} : W' \to \theta'(W')$ is biholomorphic. We have that

$$\begin{aligned} \theta'(R') \times \{b_n\} &= \theta(R') = P(n,\varepsilon) \cap \{z_n = b_n\} = P(n-1,\varepsilon) \times \{b_n\},\\ \left(\theta'|_{W'}\right)^{-1} \left(H(n-1,\varepsilon)\right) &= \left(\theta|_W\right)^{-1} \left(H(n-1,\varepsilon) \times \{z_n = b_n\}\right)\\ &= \left(\theta|_W\right)^{-1} \left(H(n,\varepsilon)\right) \cap W' \subset D \cap Y, \quad \text{and}\\ \left(\theta'|_{W'}\right)^{-1} \left(b'\right) &= \left(\theta|_W\right)^{-1} \left(b\right) \in \partial \left(D \cap Y\right), \end{aligned}$$

where $\partial (D \cap Y)$ denotes the boundary of $D \cap Y$ in *Y*. By induction hypothesis there exists $\alpha' \in H^1(D \cap Y, \mathcal{O}_Y|_{D \cap Y})$ such that the holomorphic line bundle $\Phi_{(D \cap Y, \mathcal{O}_Y|_{D \cap Y})}(\alpha')|_{D \cap R'}$ on $D \cap R'$ is not associated to any Cartier divisor on $D \cap R'$. Since $\tilde{\iota}^*$ is surjective, there exists $\alpha \in H^1(D, \mathcal{O}_X|_D)$ such that $\tilde{\iota}^*(\alpha) = \alpha'$. Assume that there exists a Cartier divisor \mathfrak{d} on $D \cap R$ such that $\Phi_{(D, \mathcal{O}_X|_D)}(\alpha)|_{D \cap R} = [\mathfrak{d}]$. By Lemma 3.2 there exists a Cartier divisor \mathfrak{c} on $D \cap R$ such that the support $|\mathfrak{c}|$ is nowhere dense in $D \cap R'$ and $[\mathfrak{d}]|_{D \cap R'} = [\mathfrak{c}|_{D \cap R'}]$. Then we have that

$$\Phi_{(D\cap Y, \mathscr{O}_Y|_{D\cap Y})}(\alpha')|_{D\cap R'} = \Phi_{(D, \mathscr{O}_X|_D)}(\alpha)|_{D\cap R'} = [\mathfrak{d}]|_{D\cap R'} = [\mathfrak{c}|_{D\cap R'}]$$

and it is a contradiction. It follows that $\Phi_{(D, \mathscr{O}_X|_D)}(\alpha)|_{D \cap R}$ is not associated to any Cartier divisor on $D \cap R$.

4. Theorems

Theorem 4.1. Let (X, \mathcal{O}_X) be a (not necessarily reduced) Cohen-Macaulay Stein space of pure dimension n and D an open set of X. Assume that the following two conditions are satisfied.

- i) $H^k(D, \mathcal{O}_X|_D) = 0$ for $2 \le k \le n 1$.
- ii) For every holomorphic line bundle L on D which is an element of the image of the composition Φ of the homomorphisms

$$H^1(D, \mathscr{O}_X|_D) \xrightarrow{\tilde{\mathrm{red}}^*} H^1(D, \mathscr{O}) \xrightarrow{e^*} H^1(D, \mathscr{O}^*)$$

there exists a Cartier divisor \mathfrak{d} on D such that $L = [\mathfrak{d}]$.

Then D *is locally Stein at every point* $x \in \partial D \setminus \text{Sing}(X, \mathcal{O}_X)$ *.*

Proof. We may assume that n > 2. Assume that there exists a point $x_0 \in \partial D \setminus D$ Sing (X, \mathcal{O}_X) such that D is not locally Stein at x_0 . Since X is Stein, there exist a holomorphic map $(f, \tilde{f}) : (X, \mathcal{O}_X) \to \mathbb{C}^n$ and an open set W of X such that $x_0 \in W \subset X \setminus \text{Sing}(X, \mathcal{O}_X), f(W) \text{ is an open set of } \mathbb{C}^n \text{ and } f|_W : W \to f(W) \text{ is }$ biholomorphic (see Grauert-Remmert [7, page 151]). Take a Stein open set V of \mathbb{C}^n such that $f(x_0) \in V \subseteq f(W)$. Let $U := (f|_W)^{-1}(V)$. Then U is Stein, $x_0 \in U \subseteq$ W and f(U) = V. Since D is not locally Stein at x_0 , the open set $f(D \cap U)$ of \mathbb{C}^n is not Stein. By Lemma 2.1 there exist a biholomorphic map $\varphi : \mathbb{C}^n \to \mathbb{C}^n, \varepsilon \in (0, 1)$ and $b = (b_1, b_2, \dots, b_n) \in \mathbb{C}^n$ such that $\varphi(H(n, \varepsilon)) \subset f(D \cap U), |b_1| \leq 1 - \varepsilon$, $\max_{2 \le \nu \le n} |b_{\nu}| = 1 \text{ and } \varphi(b) \in \partial(f(D \cap U)).$ Let $(\theta, \tilde{\theta}) := \varphi^{-1} \circ (f, \tilde{f})$: $(X, \mathscr{O}_X) \to \mathbb{C}^n$. We have that $\theta(W) = \varphi^{-1}(f(W))$ is an open set of \mathbb{C}^n and $\theta|_W: W \to \theta(W)$ is biholomorphic. Let $P := P(n, \varepsilon)$ and $H := H(n, \varepsilon)$. Since V is Stein and $\varphi(H) \subset f(D \cap U) \subset V$, we have that $\varphi(P) \subset V \subset f(W)$. Let $R := (\theta|_W)^{-1}(P)$. Then we have that $\theta(R) = P$, $(\theta|_W)^{-1}(H) \subset U$ and $(\theta|_W)^{-1}(b) \in \partial D$. By Lemma 3.3 there exists a holomorphic line bundle $L \in \operatorname{im} \Phi$ such that $L|_{D\cap R}$ is not associated to any Cartier divisor on $D\cap R$. On the other hand by assumption there exists a Cartier divisor \mathfrak{d} on D such that $L = [\mathfrak{d}]$ and therefore $L|_{D\cap R} = [\mathfrak{d}|_{D\cap R}]$, which is a contradiction. It follows that D is locally Stein at every point $x \in \partial D \setminus \text{Sing}(X, \mathcal{O}_X)$.

Remark 4.2. Condition i) in Theorem 4.1 can be replaced by the following weaker one:

i)' The dimension of $H^k(D, \mathscr{O}_X|_D)$ is at most countably infinite for every integer k such that $2 \le k \le n-1$.

Proof. If condition i)' is satisfied, then by Ballico [3, Proposizione 7], which generalizes Siu [16, Theorem A], we have that dim $H^k(D, \mathcal{O}_X|_D) < +\infty$ for $2 \le k \le n-1$. We also have that $H^k(D, \mathcal{O}_X|_D) = 0$ for $k \ge n$ by Siu [17] and by Reiffen [13, page 277]. It follows that $H^k(D, \mathcal{O}_S|_D) = 0$ for $k \ge 2$ by Raimondo-Silva [12].

Every complex manifold is Cohen-Macaulay (see Grauert-Remmert [6, page 142]). The image of $H^1(D, \mathcal{O}) \to H^1(D, \mathcal{O}^*)$ coincides with the set of topologically trivial holomorphic line bundles on D. Therefore by Theorem 4.1 and by Docquier-Grauert [5] we obtain the following theorem.

Theorem 4.3. Let X be a Stein manifold of dimension n and D an open set of X such that $H^k(D, \mathcal{O}) = 0$ for $2 \le k \le n - 1$. Then the following four conditions are equivalent.

- (1) D is Stein.
- (2) For every holomorphic line bundle L on D there exists a positive Cartier divisor \mathfrak{d} on D such that $L = [\mathfrak{d}]$.
- (3) For every holomorphic line bundle L on D there exists a Cartier divisor \mathfrak{d} on D such that $L = [\mathfrak{d}]$.
- (4) For every topologically trivial holomorphic line bundle L on D there exists a Cartier divisor \mathfrak{d} on D such that $L = [\mathfrak{d}]$.

Corollary 4.4 (Abe [1, Theorem 3]). *Let X be a Stein manifold of dimension* 2 *and D an open set of X. Then the four conditions in Theorem* 4.3 *are equivalent.*

Let *X* be a complex manifold of dimension *n* and $\varphi : X \to \mathbb{R}$ a function of class \mathscr{C}^2 . Then φ is said to be *weakly* 2-*convex* if for every $x \in X$ the Levi form of φ at *x* has at most one negative eigenvalue. By the theorem of Andreotti-Grauert [2] we have the following corollary.

Corollary 4.5 (Ballico [4, Theorem 1]). Let X be a Stein manifold and $\varphi : X \to \mathbb{R}$ a weakly 2-convex function of class \mathscr{C}^2 . Let $D := \{\varphi < c\}$, where $c \in \mathbb{R}$ is a constant. Then the four conditions in Theorem 4.3 are equivalent.

We also have the following corollary (see Serre [14, page 65]).

Corollary 4.6 (Laufer [11, Theorem 4.1]). *Let X be a Stein manifold of dimension n and D an open set of X. Then the following two conditions are equivalent.*

(1) D is Stein.

(2) $H^k(D, \mathcal{O}) = 0$ for $1 \le k \le n - 1$.

References

- M. ABE, Holomorphic line bundles on a domain of a two-dimensional Stein manifold, Ann. Polon. Math. 83 (2004), 269–272.
- [2] A. ANDREOTTI and H. GRAUERT, *Théorèmes de finitude pour la cohomologie des espaces complexes*, Bull. Soc. Math. France **90** (1962), 193–259.
- [3] E. BALLICO, Finitezza e annullamento di gruppi di coomologia su uno spazio complesso, Boll. Un. Mat. Ital. B (6) 1 (1982), 131–142.
- [4] E. BALLICO, Cousin I condition and Stein spaces, Complex Var. Theory Appl. 50 (2005), 23–25.

Макото Аве

- [5] F. DOCQUIER and H. GRAUERT, Levisches Problem und Rungescher Satz f
 ür Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann. 140 (1960), 94–123.
- [6] H. GRAUERT and R. REMMERT, "Analytische Stellenalgebren", Grundl. Math. Wiss., Vol. 176, Springer, Heidelberg, 1971.
- [7] H. GRAUERT and R. REMMERT, "Theory of Stein Spaces", Grundl. Math. Wiss., Vol. 236, Springer, Berlin-Heidelberg-New York, 1979, Translated by A. Huckleberry.
- [8] H. GRAUERT and R. REMMERT, "Coherent Analytic Sheaves", Grundl. Math. Wiss., Vol. 265, Springer, Berlin-Heidelberg-New York-Tokyo, 1984.
- [9] R. C. GUNNING, "Introduction to Holomorphic Functions of Several Variables", Vol. 3, Wadsworth, Belmont, 1990.
- [10] J. KAJIWARA and H. KAZAMA, Two dimensional complex manifold with vanishing cohomology set, Math. Ann. 204 (1973), 1–12.
- [11] H. B. LAUFER, On sheaf cohomology and envelopes of holomorphy, Ann. of Math. 84 (1966), 102–118.
- [12] M. RAIMONDO AND A. SILVA, The cohomology of an open subspace of a Stein space, J. Reine Angew. Math. 318 (1980), 32–35.
- [13] H.-J. REIFFEN, Riemannsche Hebbarkeitssätze für Cohomologieklassen mit kompaktem Träger, Math. Ann. 164 (1966), 272–279.
- [14] J.-P. SERRE, Quelques problèmes globaux relatifs aux variétés de Stein, In: "Colloque sur les fonctions de plusieurs variables tenu à Bruxelles du 11 au 14 Mars 1953", Centre belge de Recherches mathématiques, Librairie universitaire, Louvain, 1954, 57–68.
- [15] J.-P. SERRE, "Algèbre Locale. Multiplicités", 3rd ed., Lecture Notes in Math., Vol. 11, Springer, Berlin-Heidelberg-New York, 1975.
- [16] Y.-T. SIU, Non-countable dimensions of cohomology groups of analytic sheaves and domains of holomorphy, Math. Z. 102 (1967), 17–29.
- [17] Y.-T. SIU, Analytic sheaf cohomology groups of dimension n of n-dimensional complex spaces, Trans. Amer. Math. Soc. 143 (1969), 77–94.

School of Health Sciences Kumamoto University Kumamoto 862-0976, Japan mabe@hs.kumamoto-u.ac.jp