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Equations in the Hadamard ring of rational functions

ANDREA FERRETTI AND UMBERTO ZANNIER

Abstract. Let K be a number field. It is well known that the set of recurrence-
sequences with entries in K is closed under component-wise operations, and so it
can be equipped with a ring structure. We try to understand the structure of this
ring, in particular to understand which algebraic equations have a solution in the
ring. For the case of cyclic equations a conjecture due to Pisot states the follow-
ing: assume {an} is a recurrence sequence and suppose that all the an have a d th

root in the field K ; then (after possibly passing to a finite extension of K ) one
can choose a sequence of such d th roots that satisfies a recurrence itself. This was
proved true in a preceding paper of the second author. In this article we generalize
this result to more general monic equations; the former case can be recovered for
g(X, Y ) = Xd − Y = 0. Combining this with the Hadamard quotient theorem
by Pourchet and Van der Poorten, we are able to get rid of the monic restriction,
and have a theorem that generalizes both results.

Mathematics Subject Classification (2000): 11B37 (primary); 12E25, 13F25
(secondary).

1. Introduction

Let K be a field of characteristic 0, and denote by K an algebraic closure. We define
a recurrence sequence to be a sequence a = {a(n)}n∈N ⊂ K satisfying

a(n + m) + cm−1a(n + m − 1) + · · · + c0a(n) = 0

for each n ≥ 0, for some fixed c0, . . . cm−1 ∈ K , c0 �= 0. When m is minimal, the
polynomial

q(T ) = T m + cm−1T m−1 + · · · + c0

is said to be associated with the recurrence, and its roots αi are by definition the
roots of the recurrence.

On the other hand, whenever a rational function r ∈ K (x) is defined at 0,
Taylor coefficients may be taken, setting as usual sn = r (n)(0)/n!. It is well known
that in the ring of formal power series the equality r(x) = ∑

snxn holds, and it is
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easy to show that a sequence {sn} represents a rational function if, and only if, it
satisfies a linear recurrence except for a finite number of terms. In this case we call
it a rational power series.

Now, it is well known (for all these facts see [14]) that recurrence sequences
are characterized by an explicit closed form, given by exponential polynomials

a(n) =
l∑

i=1

ai (n)αn
i

where ai ∈ K [x] and αi ∈ K (the αi , assuming that the ai �= 0 and the αi are
nonzero and distinct, are in fact the roots of the recurrence). Since the sum and
products of exponential polynomials are sequences of the same kind, it follows that
the set of recurrence sequences (or equivalently the set of rational power series) is
closed under component-wise sum and product. This leads to the following

Definition 1.1. The Hadamard ring over the field K is the set of formal power
series with coefficients in K which represent a rational function, equipped with
component-wise operations. Equivalently it can be thought as the set of sequences
from K eventually satisfying a linear recurrence. It is denoted by H(K ). Whenever
a ∈ H(K ) we denote by a(n) its n-th coefficient (or its n-th term, if you think of
recurrence sequences).

Suppose now that we want to solve an algebraic equation in H(K ): the first
attempt is to solve it in the larger set K [[x]], which we regard as a ring under
component-wise sum and product of coefficients. This, in turn, amounts to solve
infinitely many equations in the field K .

The case we are interested in is when K is a number field, and we shall assume
this from now on. We shall also identify a formal power series with the sequence
of its coefficients. With this terminology Zannier proves the following theorem,
solving a conjecture of Pisot:

Theorem 1.2 ( [16]). Let K be a number field and let
∑

b(n)xn ∈ H(K ). Suppose
that for all n the equation Y d = b(n) has a solution in K . Then there exists a finite
extension K ′/K such that the same equation has a solution in H(K ′). In other
words we may choose d-th roots for the b(n) so that they satisfy themselves a linear
recurrence.

Another classical result for the problem of solving equations in this ring is the
Hadamard quotient theorem (proved in [9] and [13], but see also [10] for a detailed
account), which deals with linear equations.

Theorem 1.3 (Hadamard quotient). Let F be a field of characteristic zero and let
{b(n)}, {c(n)} ∈ H(F). Let {an} be a sequence whose elements are in a subring R
of F which is finitely generated over Z, and suppose that an = b(n)/c(n) whenever
the quotient is defined. Then there exists an element {a(n)} ∈ H(F) such that
a(n) = an for every n such that c(n) �= 0.
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In this paper we generalize these results, providing a solution to a more general
conjecture of Van der Poorten ([15]).

Theorem 1.4. Let K be a number field, b0, . . . , bd−1 ∈ H(K ), and consider the
equation

Y d + bd−1(n)Y d−1 + · · · + b0(n) = 0. (1.1)

Suppose (1.1) has a solution in K for all n ∈ N; then there exists a finite extension
K ′/K such that the same equation has a solution in H(K ′).

It will be convenient to restate Theorem 1.4 in terms of exponential polynomi-
als; moreover we may assume that the b j have roots contained in the same finite set
{β1, . . . , βm}.

Theorem 1.4 (second form). Let K be a number field and for j = 0, . . . , d −1 let

b j (n) =
m∑

i=1

bi, j (n)βn
i

be exponential polynomials, with bi, j ∈ K [x] and βi ∈ K for all i, j . Suppose that
for every n ∈ N the equation

Y d + bd−1(n)Y d−1 + · · · + b0(n) = 0 (1.1)

has a solution an ∈ K . Then there exists an exponential polynomial {a(n)} with
coefficients and roots in a finite extension of K that satisfies (1.1) identically.

Remark 1.5. Of course one can relax the hypothesis requiring that the equation
has solutions in a fixed finite extension of K . Actually we will enlarge K in the
course of the proof without further comment.

Remark 1.6. One can use the techniques of reduction of Rumely and Van der
Poorten ([10,11]) to deduce from Theorem 1.4 an analogous statement for a field K
finitely generated over Q. We omit this verification, which is substantially straight-
forward after the quoted papers. See also the paper of Corvaja [1] for a somewhat
different deduction.

Since our proof will involve an induction, it will be convenient to state and
prove the following stronger form of Theorem 1.4.

Theorem 1.7. Suppose that for each arithmetic progression A there exists an n ∈
A for which the equation (1.1) has a solution in K . Then there exists an exponential
polynomial {a(n)} with coefficients in a finite extension K ′ of K that satisfies

ad + bd−1ad−1 + · · · + b0 = 0 (1.2)

identically in H(K ′).
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Remark 1.8. One could also try to prove something stronger than Theorem 1.7;
namely that we have a solution to (1.1) in the Hadamard ring as soon as we have
solution for infinitely many n. Anyway, our present techniques do not allow us to
obtain this stronger statement. A statement of this kind for the Hadamard quotient
theorem is proved, with different methods, in [2] or in [3] (the latter also deals in
some cases with the root theorem). Some generalizations along the same lines are
worked out in [6, 7].

The main theorem has a simple corollary, which deals with the case where the
equation is not necessarily monic.

Corollary 1.9. Let K be a number field, b0, . . . , bd ∈ H(K ), and suppose that for
every n ∈ N the equation

bd(n)Y d + bd−1(n)Y d−1 + · · · + b0(n) = 0 (1.3)

has a solution an ∈ K . Then there exists a finite extension K ′/K and two recurrence
sequences {a1(n)}n∈N, {a2(n)}n∈N ∈ H(K ′) such that the sequence obtained as a
component-wise quotient a(n) = a1(n)/a2(n) (whenever defined ) is a solution
of (1.3).

To obtain the final form of our theorem we use for convenience a strengthen-
ing of the Hadamard quotient theorem, proved by Corvaja and Zannier in [2]. In
Section 5 we give a precise statement of a corollary of their theorem that we need.
Combining this with Corollary 1.9 we get our most general result:

Theorem 1.10. In the hypothesis of Corollary 1.9 suppose moreover that the se-
quence of solutions {an}n∈N to (1.3) can be taken inside a finitely generated ring.
Then there exists a finite extension K ′/K and a series

∑
a(n)xn ∈ H(K ′) such

that a(n) is a solution of (1.3) for all n such that bd(n) �= 0.

Remark 1.11. A recent paper by Corvaja ( [1]) gives another perspective on these
theorems. Corvaja restates our results in the context of actions of algebraic groups
over algebraic varieties. The theory appears there because the entries of a power
An of a matrix are given by linear recurrences in n. In particular, Corvaja, using
Theorem 1.4, proves the following

Theorem 1.12 (Corvaja). Let K be a number field and G be a connected linear
algebraic group, defined over K . Let V be a smooth affine algebraic variety and
π : V �→ G a finite map, both defined over K . Let � ⊂ G(K ) be a Zariski-dense
semigroup. If � is contained in the set π(V (K )), then there exists a connected
component V ′ of V such that the restriction π V ′ : V ′ �→ G is an unramified cover.
In particular V ′ has the structure of an algebraic group over K .

As explained there, this can be seen as a geometric generalization of the Hilbert
irreducibility theorem. Our result is used as a crucial starting point, giving the
preceding assertion for the case where � is a cyclic subgroup of Gn

m (here and
sequel Gm denotes the multiplicative group scheme).
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As we will see in the proofs, a central point of our argument is to guarantee
that, given an absolutely irreducible polynomial t (X1, . . . , Xr , Y ) over the number
field K (satisfying suitable conditons), we can find some suitable roots of unity
{ζi } such that the specialized polynomial t (ζ1, . . . , ζr , Y ) remains irreducible over
K (ζi ). In the Master thesis [5] this was achieved with a reduction modulo some
prime and an application of the Lang-Weil theorem. Although this approach is
more complicated, it should be useful in other contexts. This step is simplified
in the present proof by using a strong form of Hilbert irreducibility theorem for
cyclotomic fields, obtained by Dvornicich and Zannier in [4]; this work, in turn, is
based on a result of Loxton ( [8]), which bounds the number of addends necessary
to write a cyclotomic integer α as a sum of roots of unity in terms of the maximum
absolute value of the conjugates of α over Q.

Before turning to the proofs we summarize here our notation.

K , K̃ number fields

K ∗ the multiplicative group of the field K

R a ring of integers over a number field

P , Q prime ideals in R
H(K ) the Hadamard ring over the field K

K c the maximal cyclotomic extension of a field K

a(n), b(n) exponential polynomials, or the corresponding recurrence sequences

f , g, h polynomials or Laurent polynomials

degY f the degree of the polynomial f in the Y variable

X the vector of indeterminates (X1, . . . , Xr )

a, b multiindices

Xa Xa1
1 · · · Xar

r

A, A′ arithmetic progressions

a, b, c elements of Galois groups

Gm the multiplicative group variety GL1

ζ some root of unity

ωn a primitive n-th root of unity

Note that we use a different symbol to distinguish between some generic root of
unity and one of a fixed order.

ACKNOWLEDGEMENT. We wish to thank Pietro Corvaja and Antonella Perucca for
helpful comments. It is also a pleasure to thank the referee for his very detailed and
useful report.
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2. Some reductions

In the next sections we present the proof of Theorem 1.4; in the present section we
make some easy reductions, while the following section collects some techniques
about the specialization of polynomials at roots of unity, which will be central in
our argument.

The proof will be divided in several steps. The first two steps will fix some
notation and make some reductions, while the crux of the arguments will appear
from Step 3 onwards. At the end of Step 2, when we have fixed our notation, we
present a brief sketch of how the proof will go on.

Step 1. Reduction to the case when the multiplicative subgroup generated by the βi
inside K ∗ is free.

Namely we prove the following fact.

Lemma 2.1. In proving Theorem 1.7 it is possible to assume as well that the mul-
tiplicative subgroup � of K ∗ generated by {βi | i = 1, . . . , m} is free.

Proof. Let N be the order of the torsion part of �. Consider the exponential poly-
nomials b j,r (n) = b j (r + Nn), for some fixed r , 0 ≤ r ≤ N − 1; their roots are
the βN

i , so they generate a torsion-free group. Suppose that the conclusion of the
theorem holds under the additional hypothesis of this lemma: we then get some
exponential polynomials ar (n) such that

ar (n)d + bd−1,r (n)ar (n)d−1 + · · · + b0,r (n) = 0.

We may choose exponential polynomials cr (n) such that cr (Nn) = ar (n). We
remark that the exponential polynomial

θ(n) = 1

N

N∑
i=1

ωn
N

takes the value 1 for N |n and 0 otherwise. We define

a(n) =
N−1∑
r=0

θ(n − r)cr (n − r).

In this way if n = s + Nm, with 0 ≤ s ≤ N − 1, we find a(n) = a(s + Nm) =
cs(Nm) = as(m), and so equation (1.2) is satisfied.

We shall henceforth work under the additional hypothesis that � is free. Hav-
ing chosen a multiplicative basis γ1, . . . , γr we can write

b j (n) = f j (n, γ n
1 , . . . , γ n

r ),
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where the f j are rational function in X0, . . . , Xr of the special form

f j (X0, . . . , Xr ) = f̃ j (X0, . . . , Xr )

Xa1
1 · · · Xar

r
,

f̃ j a polynomial. As usual we call such a rational function a Laurent polynomial
(in the variables X1, . . . , Xr ); in other words a Laurent polynomial is just an ele-
ment of K [X0, X1, X−1

1 , . . . , Xr , X−1
r ]. For all we need to do in this paper Laurent

polynomials behave much like the classical ones. In particular the ring of Lau-
rent polynomials is a localization of K [X0, . . . , Xr ], hence a unique factorization
domain.

Step 2. Reduction to the problem of proving that some equations have solution in a
ring of Laurent polynomials.

Consider the equation

Y d + fd−1(X0, X D
1 . . . , X D

r )Y d−1 + · · · + f0(X0, X D
1 . . . , X D

r ) = 0 (2.1)

where we look for a solution Y = Y (X0, . . . , Xr ) in the form of a Laurent poly-
nomial in X0, . . . , Xr . If (2.1) has such a solution the conclusion of the theorem is
proved: it is sufficient to put

a(n) = Y (n, αn
1 , . . . , αn

r ),

where αi is a D-th root of γi . By construction (1.2) holds.

Remark 2.2 (Geometric interpretation). As n varies in N, the (r + 1)-tuple
(n, γ n

1 , . . . , γ n
r ) describes a cyclic subsemigroup C of A1 ×Gr

m . The equation (2.1)
defines a subvariety V of A1 × Gr

m × A1; projection on the first r + 1 coordinates
gives a ramified covering of degree d

π : V → A1 × Gr
m .

The hypothesis that equation (1.1) has a solution for all n can be rephrased say-
ing that C ⊂ π(V (K )). The conclusion that we are trying to obtain is that for
some D there is a Laurent polynomial Y (X0, . . . , Xr ) satisfying (2.1). Consider
the unramified covering

ρD : A1 × Gr
m −→ A1 × Gr

m .

(X0, . . . , Xr ) −→ (X0, X D
1 , . . . , X D

r ).

This induces a cartesian diagram

V ′ ��

π ′
��

V

π

��
A1 × Gr

m ρD
�� A1 × Gr

m,
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where V ′ is the fibered product of V and A1 × Gr
m . The Laurent polynomial

Y (X0, . . . , Xr ) gives rise to a section τ : A1 × Gr
m → V ′ of π ′; the existence

of this section means that a component of V ′ is a trivial covering of A1 ×Gr
m . This

implies that some component of V doesn’t ramify over A1 × Gr
m .

This is the point of view of [4] (see Theorem 1), of [17] (see the conjecure at
page 62) and of [1], where this construction is generalized to ramified coverings of
connected linear algebraic groups.

To prove Theorem 1.4 we can thus assume by contradiction that for each D ≥ 1
the equation (2.1) does not have a solution in the ring K [X0,X1,X−1

1 , . . . ,Xr , X−1
r ].

Gauss’ lemma guarantees that the same equation has no solutions in the quotient
field of K [X0, . . . , Xr ]. Define the Laurent polynomials

sD(X0, X, Y ) = Y d + fd−1(X0, X D
1 . . . , X D

r )Y d−1 + · · · + f0(X0, X D
1 . . . , X D

r );
our hypothesis is that these polynomials have no linear factors in Y .

Sketch of strategy. The rest of the proof will be as follows. We consider a sequence
sD1, sD2, . . . , where Di divides Di+1, and we look at the number of irreducible
factors: this number stabilizes after finitely many steps since each of these Laurent
polynomials is monic in Y . So for divisible enough values of D, the number of
factors does not change; fix one such D. We factorize sD and work with one of the
factors, call it t . We will be able to show that, since degY t ≥ 2,

there is some arithmetic progression A such that for all n ∈ A the
specialization t (n, γ n

1 , . . . , γ n
r , Y ) does not have roots in the base field.

This is the main arithmetical point (it is almost the thesis of Theorem 1.7); it will
be achieved in two steps.

First we show that the same property holds for most specializations of t at
roots of unity; namely if (ζ0, . . . , ζr ) are generic roots of unity (that is, they lie
outside a Zariski closed set), then the specialized polynomial t (ζ0, . . . , ζr , Y ) does
not have roots in K . Actually we obtain the stronger result that it does not have
solutions modQ for some suitable ideal Q in the ring of integers of K . Hence in
the next section we study a criterion for the irreducibility of the specialization of
polynomials at roots of unity. It is here that we use [4], see Section 3 below.

For the second step we use Chebotarev’s theorem in order to choose roots of
unity ζi that satisfy the congruences ζ0 ≡ n and ζi ≡ γ n

i (mod Q) whenever n
ranges in an arithmetic progression A. Combining these two steps we obtain the
claim.

This takes already care of all the cases when sD is irreducible (and so equals
t), for example the cyclotomic case treated in [16].

If sD is reducible, then we make a change of variables, in order to restrict our
exponential polynomials to the progression A. Then we repeat the same procedure
with another factor of sD , and so on. If in the process we end up with a linear factor,
we are done; otherwise we end up with an arithmetic progression A′ such that (1.1)
does not have solution for n ∈ A′.
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3. Specialization of polynomials at roots of unity

Step 3. A form of Hilbert irreducibility theorem for specializations at roots of unity.

We will now prove the following result about the specialization of Laurent polyno-
mials, as a corollary of work by Dvornicich and Zannier ([4]):

Proposition 3.1. Let K be a number field and denote by K c its maximal cyclotomic
extension. Let f be a Laurent polynomial with coefficients in K c and suppose
that f (Xa1

1 , . . . , Xar
r , Y ) is irreducible over K c for every multiindex a with each

ai ≤ degY f . Then there exists a subvariety W � Gr+1
m such that if the ζi are

roots of unity and (ζ1, . . . , ζr ) /∈ W , the specialized polynomial f (ζ1, . . . , ζr , Y ) is
irreducible in K c[Y ].

We shall make use of the following result from [12, Section 1.2, Lemma 2]

Proposition 3.2. Let K be a field and f ∈ K [X, Y ]; there exist a polynomial
g ∈ K [X, Y ] and a non-zero polynomial g1 ∈ K [X] with the following property.
Suppose x1, . . . , xr lie in some extension L of K and g1(x1, . . . , xr ) �= 0; then
f (x1, . . . , xr , Y ) is reducible in L[Y ] if, and only if, g(x1, . . . , xr , Y ) has a root
in L.

Actually the proposition is stated there for polynomials, but it is easy to derive
the conclusion for Laurent polynomials as well. To prove Proposition 3.1 we will
also need the following

Proposition 3.3. Let f (X1, . . . , Xr , Y ) be a Laurent polynomial with coefficients
in some field K , and suppose that f (Xa1, . . . , Xar , Y ) is reducible over K for some
multiindices a1, . . . , ar ∈ Zr . Suppose moreover that the ai are linearly indepen-
dent. Then there is a m ≤ degY f such that f (Xm

1 , . . . , Xm
r , Y ) is reducible over K .

Proof. It is easy to see that any rank r lattice L inside Zr contains a sublattice of
the form

〈(M, 0, . . . , 0), (0, M, 0, . . . , 0), . . . , (0, . . . , 0, M)〉 ,

where M is the discriminant of L. In fact if B(L) is a matrix whose columns form
a basis of L and B ′(L) is the cofactors matrix, then B ′(L) · B(L) = MI, I being the
identity matrix.

Moreover if the b j form a sublattice of the lattice spanned by the a j , then by
substitution we obtain that f (Xb1, . . . , Xbr , Y ) is reducible too. Combining these
facts we can assume that we have a factorization

f (X M
1 , . . . , X M

r , Y ) = f1(X1, . . . , Xr , Y ) · · · fm(X1, . . . , Xr , Y )

for some M ∈ N. We get an action of (Z/MZ)r on the set { f1, . . . , fm} of factors
by letting

(a1, . . . , ar ). fi (X1, . . . , Xr , Y ) = fi (ω
a1
M X1, . . . , ω

ar
M Xr , Y ).
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The index of the stabilizer of the factor f1 is m′ = #Orb( f1) ≤ m, hence this
stabilizer contains a subgroup of the form

k1Z/MZ × · · · × krZ/MZ,

where ki divides m′. This means that each monomial in f1 involves the variable
Xi at a power multiple of M/ki , which in turn is a multiple of M/m′; hence we

can write f1(X1, . . . , Xr , Y ) = f ′
1(X M/m′

1 , . . . , X M/m′
r , Y ). The same holds for

the complementary factor. But this implies that f (Xm′
1 , . . . , Xm′

r , Y ) is already re-
ducible, and by construction m′ ≤ degY f

Proof of Proposition 3.1. By contradiction. Assume that there exists a set Z of
roots of unity, Zariski dense in Gm , such that f (ζ1, . . . , ζr , Y ) is reducible over K c

for each choice of (ζ1, . . . , ζr ) ∈ Z . We apply Proposition 3.2 to f ; let g and g1
be as in the conclusion. It is not restrictive to suppose that for (ζ1, . . . , ζr ) ∈ Z we
have g1(ζ1, . . . , ζr ) �= 0; then Proposition 3.2 guarantees that g(ζ1, . . . , ζr , Y ) has
a root in K c. If g is reducible, there is at least one of his irreducible factors g2 such
that the subset of Z for which g2(ζ1, . . . , ζr , Y ) has a root in K c is still dense; we
replace Z by this smaller subset.

We apply Theorem 1 of [4] with V the zero locus of g2 inside Gr+1
m and

π : V �→ Gr
m the projection on the X coordinates. The hypothesis of the theo-

rem require that the subset J of V consisting of those elements mapping to roots of
unity is dense in V . By construction we know that π(J ) ⊃ Z , so it is dense in Gr

m .
It follows that dim J ≥ r , so J is actually dense in V by irreducibility.

The theorem gives us a lot of information. First, it guarantees that the closure
of π(V ) has the form ζ T , where T is a subtorus of Gr

m , and ζ is torsion. In our
case T equals Gr

m , since we already know that π(V ) is dense. Moreover it asserts
the existence of an isogeny µ : T �→ T and a rational map ρ : T ��� V , defined
over K c, such that π ◦ ρ = ζ · µ.

In our situation we can assume that ζ = 1, since T is the whole Gr
m . Moreover

it is well known that any isogeny µ : Gr
m �→ Gr

m is of the form

(x1, . . . , xr ) �→ (xa1, . . . , xar )

for suitable linearly independent multiindices ai . The rational map ρ can be written
as

(
R1(X1, . . . , Xr ), . . . , Rr+1(X1, . . . , Xr )

)
, where the Ri ∈ K c(X1, . . . , Xr ).

The fact that ρ takes values in V can be translated saying that

g2
(
R1(X1, . . . , Xr ), . . . , Rr+1(X1, . . . , Xr )

) = 0.

The fact that it is, up to isogeny, a section of π means that Ri (X1, . . . , Xr ) = Xai

for i = 1, . . . , r . So a fortiori

g
(
Xa1, . . . , Xar , Rr+1(X1, . . . , Xr )

) = 0.

This means that g(Xa1, . . . , Xar , Y ) has a root in K c(X1, . . . , Xr ); by Proposi-
tion 3.2 again we obtain that f (Xa1, . . . , Xar , Y ) is reducible over K c. Proposi-
tion 3.3 now allows us to conclude.
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Step 4. The irreducibility properties of our polynomials.

We do not know much about the irreducibility of our Laurent polynomials sD , but
let us vary D, making it more and more divisible. The number of factors will
stabilize to a number less than degY g, since g is monic in the Y variable. So there
is a D0 such that if sD0 factors as

sD0(X0, X, Y ) = t1(X0, X, Y ) · · · tl(X0, X, Y ),

then for every M ∈ N
sM D0(X0, X, Y ) = t1(X0, X M

1 , . . . , X M
r , Y ) · · · tl(X0, X M

1 , . . . , X M
r , Y )

will also be a decomposition into prime factors. Our hypothesis in Step 2 amounts
to saying that degY ti ≥ 2 for each i = 1, . . . , l.

It is not restrictive to assume that D0 = 1, as we shall do from now on. In fact
multiplying by D0 the terms of an arithmetic progression yields another arithmetic
progression (see also Step 4). We now want to specialize the first variable X0 in
such a way to preserve irreducibility. By the Hilbert irreducibility theorem ( [12,
Section 4.4]) we can find some θ ∈ K such that each factor t j (θ, Xm

1 , . . . , Xm
r , Y )

remains irreducible for m ≤ degY t j . Proposition 3.3 guarantees that t j (θ, Xar, . . . ,

. . . Xar, Y ) will be irreducible for each choice of linearly independent multi-
indices a j .

4. Proof of the main theorem

Step 5. Some irreducible factor t of sD admits an irreducible specialization at roots
of unity.

We choose a rational prime β multiplicatively independent from the γi ’s, and put
δi = γiβ

ki , for some integers ki which we shall choose later. The following lemma
is proved in [16] (it is here that we make use of the fact that the multiplicative group
� is free).

Lemma 4.1 ( [16]). There exists a number L such that, whenever we take M ≥ 1
and a prime � > L, then βM doesn’t belong to the multiplicative group generated
by the δi and by ((K c)∗)�M . The number L depends on K , β and γi , but it doesn’t
depend on the ki .

We fix once and for all a natural number L greater than degY g and big enough
for the preceding lemma to hold. Consequently we choose D divisible by each
prime factor less than L and big enough, so that the inclusion Qc ∩ K ⊂ Q(ωD)

holds. The latter choice will guarantee that for each c ≥ 1, Q(ωcD)/Q(ωD) and
K (ωD)/Q(ωD) are linearly disjoint extensions.

Now we fix some factor t , say t1, of s; we will work with this polynomial until
the last step. Let us put

t̃(X1, . . . , Xr , Y ) = t (θ, X D
1 , . . . , X D

r , Y ),

where θ is defined at the end of the previous section.
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Lemma 4.2. Let W � Gr
m be an algebraic subvariety of a torus, defined over K ,

and fix a natural number M. Then there exist roots of unity ζ1, . . . , ζr such that:
i) (ζ1, . . . , ζr ) /∈ W (K c)

ii) the order of each ζ j is not multiple of a prime less than M.

Proof. Let S be the set of roots of unity whose order is not multiple of a prime less
than M . Since S is infinite, it is dense in Gm . It follows that Sr is dense in Gr

m .

The preceding lemma, together with Proposition 3.1, allows us to fix roots of
unity ζ1, . . . , ζr such that the multiplicative order of ζ j is not multiple of a prime
smaller than L , and at the same time

h(Y ) = t̃(ζ1, . . . , ζr , Y ) (4.1)

remains irreducible over K .

Step 6. We prove that the specialized polynomial h has no roots, even modulo some
suitable primes.

We start with a lemma.

Lemma 4.3. There exist infinitely many primes of the form p = 1 + Dm such that

i) every prime factor of m is greater than L
ii) we can write ζi = ω

ki
p−1 for suitable integers ki .

Proof. This is an easy consequence of Dirichlet’s theorem on the existence of
primes in arithmetic progressions. Let c be the lowest common multiple of the
orders of ζ0, . . . , ζr . We need a prime p satisfying the following congruences:{

p ≡ 1 (mod Dc)
p �≡ 1 (mod D�) for each prime � ≤ L .

(4.2)

Indeed the first congruence guarantees that p can be written in the form 1 + Dm
for some m, and that p − 1 is multiple of the order of every root of unity ζi , while
the second condition implies that m doesn’t have any prime factor smaller than L .
Thanks to the chinese remainder theorem and Dirichlet’s theorem we find a prime
solution to (4.2).

The preceding lemma allows to fix the numbers ki mentioned at the beginning
of the section. We define

K̃ = K (ωp−1)

E = K (ωp−1, β
1/m, δ

1/m
1 , . . . , δ

1/m
r ).

(4.3)

Lemma 4.4. The polynomial h defined in (4.1) remains irreducible in E.
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Proof. Assume this is not the case, and factor h as h = h1h2 where 0 < di =
deg hi < deg h. Let E ′ be obtained by adding a root of h1 to E . By Kummer theory
we know that [E : K̃ ] divides a power of m, so [E ′ : K̃ ] divides d1 times a power
of m. On the other hand, by construction h admits a root in E ′, so deg h divides
[E ′ : K̃ ]; this is impossible since each prime factor of m is > L ≥ d.

Lemma 4.5.
[E : K (ωp−1, δ

1/m
1 , . . . , δ

1/m
r )] = m. (4.4)

Proof. If the degree were lower, it would be a proper divisor of m, again by Kummer
theory. Take a prime � such that this degree divides m/�. We can apply Kummer
theory to the field K̃ : the two groups

 =〈(K̃ ∗)m, β, δ1, . . . , δr 〉
′ =〈(K̃ ∗)m, β�, δ1, . . . , δr 〉

define the same extension E/K̃ , so they coincide. In particular we can express

β = αmβ�a0δ
a1
1 · · · δar

r

for some α ∈ K̃ . But this contradicts Lemma 4.1 with M = 1 (note that
� > L).

Since the extension E/k(ωp−1, δ
1/m
1 , . . . , δ

1/m
r ) is cyclic we can take a gener-

ator a of its Galois group.

Lemma 4.6. Call E ′ the splitting field of h(Y ) over E. There exists b ∈ Gal(E ′, K̃ )

such that:
i) b E = a,

ii) if y is a root of h, then b(y) �= y.

Proof. We first show the existence of some c ∈ G = Gal(E ′, K̃ ) satisfying ii). This
amounts to proving that the union of the stabilizers of the roots of h is not all of G.
By the irreducibility of h these stabilizers are conjugate subgroups. Let H be one
of them; then there are at most |G|/|H | stabilizers, each one of order |H |, so the
union cannot be all of G (they all contain the identity).

Let c̃ = c E ∈ Gal(E, K̃ ), and d = c̃−1a. We only need to extend d to E ′ in
such a way that d(y) = y for every root y of h. If we call F the splitting field of
h over K̃ , so that E ′ = E F , we reduce to the problem of verifying that E and F
are linearly disjoint over K̃ . This follows by comparison of the degrees: [F : K̃ ]
divides d!, while [E : K̃ ] divides some power of m, and each prime factor of m is
> L ≥ d.
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Let R be the ring of integers of K̃ . By the Chebotarev theorem we get a set of
primes Q of R, of positive density, whose Frobenius verifies φ(Q′|Q) = b in E ′,
for some prime Q′ over Q. We do not affect the density if we further ask that Q is
unramified over the rationals. Subject to these conditions, we take a big prime Q at
which the reductions of β, γ j and f j are defined, and call Q′ a prime over it such
that φ(Q′|Q) = b.

Lemma 4.7. If Q has big enough norm, then the congruence h(Y ) ≡ 0 (mod Q)

has no solutions.

Proof. First we remark that if Q is big enough, h has distinct roots mod Q. Let y
be one of such roots: by Lemma 4.6 we know that b(y) �= y. If Q has big enough
norm and Q′ is above Q, then Q′ is not a prime factor of the number b(y) − y for
any root y of h. Hence for every root y we have b(y) �≡ y (mod Q′).

This means that the Frobenius of Fq = R/Q does not fix the class y in the
algebraic closure Fq of Fq ; that is, h has no roots mod Q.

Step 7. Here we prove that when n is chosen in a suitable arithmetic progression,
the polynomial t (n, γ n

1 , . . . , γ n
r , Y ) has no roots in the base field.

Lemma 4.8. There exists an arithmetic progression A such that if n ∈ A, then for
each j = 1, . . . , r {

n ≡ θ (mod Q)

γ n
j ≡ ω

k j
m (mod Q).

Proof. Denote q = N K̃
Q (Q) the norm of Q. By our choices we know that q splits

completely in Q(ωp−1), so we deduce that q ≡ 1 (mod p − 1), and in particular

m|q − 1. Moreover b fixes each δ
1/m
j , so δ j is a m-th power mod Q, hence

δ
q−1

m
j ≡ 1 (mod Q).

Similarly b(β) = ωa
mβ for some a, which is coprime with m by (4.4), so

β
q−1

m ≡ ωa
m (mod Q).

Putting the two relations together we deduce

γ
q−1

m
j ≡ ω

ak j
m (mod Q).

Calling b the inverse of a mod m we find that

γ
b q−1

m
j ≡ ω

k j
m (mod Q).
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Moreover, we can take c ∈ N satisfying c ≡ θ (mod Q). If n ∈ N is a solution of
the congruences

n ≡ c (mod q), n ≡ b
q − 1

m
(mod q − 1),

then we have the relations{
n ≡ θ (mod Q)

γ n
j ≡ ω

k j
m (mod Q) j = 1, . . . , r.

(4.5)

We fix an arithmetic progression

A = {an + b, n ∈ N} (4.6)

satisfying the conclusion of Lemma 4.8.

Lemma 4.9. Assume that n ∈ A. Then the polynomial t (n, γ n
1 , . . . , γ n

r , Y ) has no
roots in K .

Proof. The conditions (4.5) imply that

t (n, γ n
1 , . . . , γ n

r , Y ) ≡ t (θ, ω
k1
p−1, . . . , ω

kr
p−1, Y ) ≡ h(Y ) (mod Q).

If t (n, γ n
1 , . . . , γ n

r , Y ) had a root in K , then h would have a root mod Q, which is
excluded by Lemma 4.7

Step 8. Conclusion of the proof of Theorem 1.7.

Now if t1 is the only factor of s, we are done. Otherwise we proceed in the following
way. Let a, b ∈ N be given by (4.6). We operate the substitution

t ′i (X0, X1, . . . , Xr , Y ) = ti (aX0 + b, γ b
1 Xa

1 , . . . , γ b
r Xa

r , Y ).

This amounts to restricting the corresponding recurrence sequences to A. In this
way we do not have to care about the factor t1, and we proceed with the next factor.
The t ′i may not be irreducible anymore, but after further factorization and relabeling
we assume that t ′2 is irreducible. If t ′2 has degree greater than one, we call it t and
repeat the whole procedure on and on. Since the ti are monic polynomials in Y ,
the process must stop in at most (degY s)/2 steps. Eventually one of the following
cases will happen:
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i) We get an arithmetic progression A′ = {a′n + b′, n ∈ N} and a degree one
(in the last variable) factor of s(a′X0 + b′, γ b′

1 Xa′
1 , . . . , γ b′

r Xa′
r , Y ), say Y −

Y (X0, . . . , Xr ). In this case let us take αi such that αa′
i = γi . Put a(n) =

Y (n/a′, αn
1 . . . , αn

r ); then a(n) is an exponential polynomial, and the relation

S(a′X0 + b′, γ b′
1 Xa′

1 , . . . , γ b′
r Xa′

r , Y (X0, . . . , Xr )) = 0

gives, for X0 = n/a′ and Xi = αn
i ,

S(n + b′, γ n+b′
1 , . . . , γ n+b′

r , a(n)) = 0,

that is
a(n)d + bd−1(n + b)a(n)d−1 + · · · + b0(n + b) = 0,

so we have a solution of the original equation in the Hadamard ring.
ii) We never get a degree one factor. In this case, after at most d/2 steps we end

with an arithmetic progression A′ = {a′n + b′, n ∈ N} such that (1.1) has no
solution in K for n ∈ A′, which is the thesis.

5. Proof of the remaining assertions

The aim of the present section is to prove Corollary 1.9 and Theorem 1.10, which
deal with not necessarily monic equations.

Proof of Corollary 1.9. Multiplying (1.3) by bd(n)d−1 and putting Z = bd(n)Y we
obtain the equation

Zd + bd−1(n)Zd−1 · · · + b0(n)bd(n)d−1 = 0;
this has a solution a2(n) ∈ H(k′) for some finite extension K ′/K , thanks to Theo-
rem 1.4. Putting a1(n) = bd(n) we get the thesis.

Preliminary to the proof of Theorem 1.10 we cite a stronger form of the
Hadamard quotient theorem, due to Corvaja and Zannier ([2, Corollary 2])

Theorem 5.1. Let K be a number field and R ⊂ K a finitely generated ring. Let∑
b(n)xn,

∑
c(n)xn ∈ H(K ) and assume that their roots generate a torsion-free

group. Then either b(n)/c(n) is a recurrence sequence or the set of natural numbers
n for which b(n)/c(n) ∈ R has zero density.

We will also need the Skolem-Mahler-Lech theorem (see [14]).

Theorem 5.2 (Skolem, Mahler, Lech). Let K be a field of characteristic 0 and let
{a(n)} be a linear recurrence over K . Then the zero set of a

{n ∈ N | a(n) = 0}
is the union of a finite set with a finite number of arithmetic progressions.
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Proof of Theorem 1.10. By Corollary 1.9 we know that we can find two recurrence
sequences {a1(n)} and {a2(n)} such that a2(n)/a1(n) satisfies equation (1.3) for
every n such that the quotient is defined. We can argue as in Lemma 2.1 to restrict
ourselves to the case where the roots of {a1(n)} and {a2(n)} generate a torsion-free
group, call it G. Let us call A the ring of the recurrence sequences with roots in G.
A is isomorphic to a localization of a polynomial ring over K : if g1, . . . , gr are free
generators of G, then an isomorphism

ϕ : K [H, X1, X−1
1 . . . , Xr , X−1

r ] �→ A (5.1)

is defined by sending f (H, X1, . . . , Xr ) to { f (n, gn
1 , . . . , gn

r )}. In particular A is
a unique factorization domain. We can divide both a1 and a2 by their greatest
common divisor in A, so we shall assume that a1 and a2 are relatively prime.

At first suppose that bd never vanishes; then the same holds true for a1, which
divides bd . In particular the quotient a2(n)/a1(n) is always defined. The polyno-
mial

bd(n)Y d + bd−1(n)Y d−1 + · · · + b0(n)

is divisible by a1(n)Y − a2(n) in K̃ [Y ], where K̃ is the field of fractions of A; by
Gauss’ lemma the same is true in A[Y ]. So we have a factorization of the original
equation as

(a1(n)Y − a2(n))
(

cd−1(n)Y d−1 + cd−2(n)Y d−2 + · · · + c0(n)
)

= 0,

for suitable recurrence sequences ci (n). By induction on the degree, we know that
either the equation

cd−1(n)Y d−1 + cd−2(n)Y d−2 + · · · + c0(n) = 0 (5.2)

has a solution in some Hadamard ring (in which case we are done), or it is not
solvable in the field K for all n in some arithmetic progression A. But then we
must have an = a2(n)/a1(n) for n ∈ A; by the theorem of Corvaja and Zannier the
quotient of a2(n) by a1(n) is then a recurrence sequence itself.

Now consider the general case. By the theorem of Skolem-Mahler-Lech we
know that the zero set of bd is a union of a finite number of elements and a finite
number of arithmetic progressions. Since we are working in H(K ) we can disregard
the finite number of terms; so we can assume that there is an m ∈ N and some
numbers n1, . . . , nr ∈ {0, . . . , m − 1} such that bd(n) = 0 if, and only if, n ≡ ni
(mod m) for some i .

Fix a number c ∈ {0, . . . , m − 1} different from all the ni , and consider the
equation

bd(c + nm)Y d + bd−1(c + nm)Y d−1 + · · · + b0(c + nm) = 0.

The coefficients bi (c + nm) are linear recurrences in n (up to a finite number of
terms), and by construction bd(c+nm) never vanishes. By the first part of the proof
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we can find a series
∑

ac(n)xn ∈ H(K ′) such that ac(n) satisfies the equation for
all n. For c = ni we can choose any linear recurrence ac, for example put ac(n) = 0
for all n.

As we have seen in the proof of Lemma 2.1, the exponential polynomial

θ(n) = 1

m

m∑
i=1

ωn
m

takes the value 1 for m|n and 0 otherwise. Choose exponential polynomials a′
c(n)

such that a′
c(mn) = ac(n). We define

a(n) =
m−1∑
r=0

θ(n − r)a′
r (n − r).

By construction a(c + nm) = ac(n) for all c = 0, . . . , m − 1, so a(n) satisfies
equation (1.3) whenever bd(n) �= 0.

Remark 5.3. With a bit more work we can do without the result of Corvaja and
Zannier. Keep the notation of the proof and assume that (5.2) does not have a
solution in a Hadamard ring. Then there is an arithmetic progression A such that
an = a2(n)/a1(n) for n ∈ A.

Consider the restriction of {a1(n)} and {a2(n)} for n ∈ A. These are recur-
rence sequences, and for such n the quotients a2(n)/a1(n) = an lie in R. By the
Hadamard quotient theorem there exists a recurrence sequence {b(n)}n∈A such that
a2(n)/a1(n) = b(n) for all n ∈ A. We can extend b to a recurrence sequence
{b(n)}n∈N defined for all n ∈ N, and we can do this in such a way that the roots of
b lie in G. We claim that then the equality a2(n)/a1(n) = b(n) holds for all n ∈ N.
This is easily seen using the isomorphism ϕ in (5.1).

In fact, call f1 = ϕ−1(a1), f2 = ϕ−1(a2) and g = ϕ−1(b). Moreover write
A = {sn+t | n ∈ N}; it is not restrictive, up to shifting the recurrence sequences, to
assume that t = 0. Then the conclusion of the Hadamard quotient theorem amounts
to saying that

f2(s H, Xs
1, . . . , Xs

r ) = f1(s H, Xs
1, . . . , Xs

r )g(s H, Xs
1, . . . , Xs

r ).

From this it is clear that f2 = f1g, since the indeterminates Xs
1, . . . , Xs

r are still
algebraically independent.
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