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Extensions of the Cugiani-Mahler theorem

YANN BUGEAUD

Abstract. In 1955, Roth established that if ξ is an irrational number such that
there are a positive real number ε and infinitely many rational numbers p/q with
q ≥ 1 and |ξ − p/q| < q−2−ε , then ξ is transcendental. A few years later,
Cugiani obtained the same conclusion with ε replaced by a function q �→ ε(q)
that decreases very slowly to zero, provided that the sequence of rational solu-
tions to |ξ − p/q| < q−2−ε(q) is sufficiently dense, in a suitable sense. We give
an alternative, and much simpler, proof of Cugiani’s Theorem and extend it to
simultaneous approximation.

Mathematics Subject Classification (2000): 11J68.

1. Introduction

In 1955, Roth [26] established that, like almost all real numbers (throughout the
present paper, ‘almost all’ refers to the Lebesgue measure), an algebraic irrational
number cannot be approximated by rationals at an order greater than 2.

Theorem 1.1 (Roth, 1955). Let ξ be an irrational, algebraic real number. Let ε be
a positive real number. Then there are only finitely many rational numbers p/q with
q ≥ 1 such that ∣∣∣∣ξ − p

q

∣∣∣∣ <
1

q2+ε
· (1.1)

As pointed out by Mahler in Appendix B of [21], Roth’s theorem suggests the fol-
lowing problem.

Problem 1.2. Let ξ be an irrational, algebraic real number. To find a positive func-
tion q �→ ε(q) of the integral variable q, with the property

lim
q→+∞ ε(q) = 0,

such that there are at most finitely many distinct rational numbers p/q with positive
denominator for which ∣∣∣∣ξ − p

q

∣∣∣∣ <
1

q2+ε(q)
· (1.2)
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If one believes that real algebraic numbers do behave like almost all real num-
bers as far as rational approximation is concerned, then Problem 1.2 should have a
positive answer with the function ε given by

q �−→ (1 + η)
log log q

log q
,

for an arbitrary positive number η.
As written by Mahler, ‘the method of Roth does not seem strong enough for

solving this problem’; however, a weaker result was found by Cugiani [10] in 1958.

Theorem 1.3 (Cugiani, 1958). Let ξ be a real algebraic number of degree d. For
an integer q ≥ 16, set

ε(q) = 9d

(log log log q)1/2
· (1.3)

Let (p j/q j ) j≥1 be the sequence of reduced rational solutions of∣∣∣∣ξ − p

q

∣∣∣∣ <
1

q2+ε(q)
,

ordered such that 16 ≤ q1 < q2 < . . . Then either the sequence (p j/q j ) j≥1 is
finite, or

lim sup
j→+∞

log q j+1

log q j
= +∞. (1.4)

The above theorem was subsequently generalized by Cugiani [11, 12] and Mahler
[21] to include non-Archimedean valuations, and is now referred to as the Cugiani–
Mahler theorem. Its extension to approximation by elements from a given number
field was worked out by Rodriquez [24, 25].

A further improvement was obtained in 1988 by Bombieri and van der Poorten
[8], who used the Dyson lemma of Esnault and Viehweg in place of the Roth lemma
and were able to derive the Cugiani–Mahler theorem with a function ε that de-
creases to zero faster than in (1.3).

Theorem 1.4 (Bombieri and van der Poorten, 1988). Let ξ be a real algebraic
number of degree d. For an integer q ≥ 4, set

ε(q) = 7 (log 4d)1/2
(

log log log 4q

log log 4q

)1/4

·

Let (p j/q j ) j≥1 be the sequence of reduced rational solutions of∣∣∣∣ξ − p

q

∣∣∣∣ <
1

q2+ε(q)
,

ordered such that 4 ≤ q1 < q2 < . . . Then either the sequence (p j/q j ) j≥1 is finite
or

lim sup
j→+∞

log q j+1

log q j
= +∞.
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As far as we are aware, the above theorem provides currently the best contribution
towards a resolution of Problem 1.2.

At the end of the 60’s, multidimensional extensions of Roth’s theorem were
established by W. M. Schmidt [27–29]. We extract the following statements from
Chapter VI of [31]. Given a real number x , we denote by ||x || the distance from x
to the nearest integer. Given an algebraic number α, we denote by H(α) its height,
that is, the maximal of the absolute values of the coefficients of its minimal defining
polynomial over the ring of integers.

Theorem 1.5 (Schmidt, 1970). Let n be a positive integer. Let ξ1, . . . , ξn be alge-
braic real numbers such that 1, ξ1, . . . , ξn are linearly independent over the ratio-
nals. Let ε be a positive real number. Then, there exist only finitely many positive
integers q such that

q · ‖qξ1‖ · · · ‖qξn‖ < q−ε. (1.5)

Theorem 1.6 (Schmidt, 1970). Let n be a positive integer. Let ξ be a real algebraic
number of degree greater than n. Let ε be a positive real number. Then, there exist
only finitely many algebraic numbers α of degree at most n such that

|ξ − α| < H(α)−n−1−ε. (1.6)

Schmidt [30] established a general result in 1972, commonly referred to as the
Schmidt Subspace theorem, and from which the above two theorems follow. The
quantitative version of the Schmidt Subspace theorem is quoted as Theorem ES in
Section 4. No multidimensional analogue of the Cugiani–Mahler theorem has been
published yet. Our main purpose is precisely to establish such a statement.

Let us now describe the structure of the present work. We begin with giving
a (presumably) new proof of a stronger version of the above quoted theorem of
Cugiani: we show that it easily follows from an upper estimate for the number of
solutions to (1.1). Related results are stated in Section 2 and proved in Section 5.

This new approach allows us to establish multidimensional extensions of the
Cugiani–Mahler theorem, by means of a quantitative version of the Schmidt Sub-
space theorem. The corresponding statements are gathered in Section 3 and proved
in Section 6.

An application of the Cugiani–Mahler theorem to fractional parts of powers
of rational numbers is discussed in Section 7. The paper ends with several remarks
gathered in Section 8.

2. Small variations around the Cugiani–Mahler theorem

The single paper on the Cugiani–Mahler theorem that we do not have quoted in
Section 1 was published by Mignotte [22]. It contains an improvement upon the
gap condition (1.4). Mignotte’s result can be formulated as follows.
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Theorem 2.1 (Mignotte, 1972). Let ξ be a real algebraic number of degree d. Let
α be real, 0 < α < 6. For an integer q ≥ 16, set

ε(q) =
(

16 log(d + 2) log 2

α log log log q

)1/2

·

Let (p j/q j ) j≥1 be the sequence of reduced rational solutions of

∣∣∣∣ξ − p

q

∣∣∣∣ <
1

q2+ε(q)
,

ordered such that 16 ≤ q1 < q2 < . . . Then either the sequence (p j/q j ) j≥1 is finite
or, for any real number ρ with 1 < ρ < 2(6−α)/α , we have

lim sup
j→+∞

log q j+1

(log q j )ρ
= +∞. (2.1)

Bombieri and van der Poorten noted at the end of [8] that, if one wishes to get a gap
condition as in (2.1), their method only yields a result of the quality of Mignotte’s.

The main result of this section is in the same spirit as the Cugiani–Mahler
theorem. It is an easy consequence of an estimate of Evertse [14] for the number of
solutions to (1.1).

Theorem 2.2. Let ξ be a real algebraic number of degree d. Let ε be a non-
increasing function defined over the set of positive integers and tending to 0 at
infinity. Assume that there is an infinite sequence (p j/q j ) j≥1 of reduced rational
numbers such that 1 ≤ q1 < q2 < . . . and

∣∣∣∣ξ − p j

q j

∣∣∣∣ <
1

q
2+ε(q j )

j

, for j ≥ 1.

Then, there exist a constant c1(d), depending only on the degree d of ξ , and a
constant c2(ξ), depending only on ξ , such that

ε(q j ) ≤ c1(d) j−1/3 (log j)2/3, for j ≥ c2(ξ).

Theorem 2.2 asserts that if (1.2) has infinitely many solutions, then there is a big
gap between any two of these solutions, and the size of these gaps increases when
the function ε decreases slowly to zero.

We display an immediate corollary of Theorem 2.2. For a positive integer m,
we denote by expm the mth iterate of the exponential function and by logm the func-
tion that coincides with the mth iterate of the logarithm function on [expm 1, +∞)

and that takes the value 1 on (−∞, expm 1]. We also adopt the convention that log0
coincides with the identity function.
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Corollary 2.3. Let m be a positive integer and set

ε(q) = (logm+1 q)−1/3 (logm+2 q), for q ≥ 1.

Let ξ be a real algebraic number and let (p j/q j ) j≥1 be the sequence of reduced
rational solutions of ∣∣∣∣ξ − p

q

∣∣∣∣ <
1

q2+ε(q)
,

ordered such that 1 ≤ q1 < q2 < . . . If the sequence (p j/q j ) j≥1 is infinite, then

lim
j→+∞

logm+1 q j

j
= +∞, (2.2)

and, consequently,

lim sup
j→+∞

logm q j+1

logm q j
= +∞. (2.3)

Taking m = 1 in Corollary 2.3, we get a (slight) improvement of the theorem of
Bombieri and van der Poorten. Choosing m = 2 in Corollary 2.3, we get a result
comparable to Mignotte’s theorem.

All the previous proofs of the Cugiani–Mahler theorem were obtained by a
suitable modification of the proof of Roth’s theorem (see also [33, Exercise 7.5.5]),
and thus are much more technical than the proof of Theorem 2.2. Actually, the
complications of the present proof are hidden in the proof of Evertse’s estimate for
the number of solutions to (1.1), recalled in Section 4.

It is of interest to note that if we insert the upper bound established in 1955 by
Davenport and Roth [13] for the number of solutions to (1.1) in place of Evertse’s
estimate in the proof of Theorem 2.2, then we get a very short proof of the above
theorem of Cugiani, with the function ε given in (1.3) replaced by the function

q �→ (log log log q)−1/2 (log log log log q), (q ≥ 108).

The fact that the sequence (q j ) j≥1 increases as rapidly as given by (2.2) has not
been pointed out in the earlier works on the Cugiani–Mahler theorem. This is much
stronger than (2.3), which says only that there are infinitely many large gaps in the
sequence (q j ) j≥1. This improvement follows from a simple gap principle saying
that (q j ) j≥1 increases at least exponentially. Unfortunately, we were unable to es-
tablish analogues of (2.2) for our Theorems 2.4, 3.1 and 3.2 below. This is due to
the lack of a sufficiently strong gap principle.

The proof of Theorem 2.2 is very flexible and can be easily adapted to include
non-Archimedean valuations, as in a result of Ridout [23]; we simply have to re-
place the use of Evertse’s estimate by a result of Locher [19] to get the following
theorem.

For a prime number � and a non-zero rational number x , we set |x |� := �−u ,
where u is the exponent of � in the prime decomposition of x . Furthermore, we set
|0|� = 0.
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Theorem 2.4. Let S be a finite set of prime numbers, and denote by s its cardinality.
Let η be a positive real number. Let m be a positive integer and set

ε(q) = (logm+1 q)−1/(s+5+η), for q ≥ 1.

Let ξ be a real algebraic number and let (p j/q j ) j≥1 be the sequence of reduced
rational solutions of

min

{
1,

∣∣∣∣ξ − p

q

∣∣∣∣
}

·
∏
�∈S

|pq|� <
1

q2+ε(q)
, (2.4)

ordered such that 1 ≤ q1 < q2 < . . . Then either the sequence (p j/q j ) j≥1 is finite
or

lim sup
j→+∞

logm q j+1

logm q j
= +∞.

We point out that the function ε occurring in Theorem 2.4 does depend on the set
of primes S, while this is not the case in Theorem 6.5.10 from Chapter 6 of the
monograph of Bombieri and Gubler [7]. The latter is given without proof, and we
were unable to find the key ingredient used by Bombieri and Gubler to remove the
dependence on the cardinality of S.

Versions of Theorem 2.4 in which (2.4) is replaced by a system of inequalities
were proved by Mahler [21] and Mignotte [22]. It does not seem to be easy to
deduce Theorem 2.4 from their results: the difficulty lies in the fact that we have a
product in the left-hand side of (2.4).

Theorem 2.4 can be used to give new explicit examples of transcendental num-
bers, by proceeding exactly as Mahler did, see [21, Theorem 3, page 178] and [22,
Théorème 3]. Theorem 2.4 also implies new results on the distribution modulo one
of the sequence of integral powers of a rational number greater than one: see [21,
Theorem 2, page 176] and [22, Théorème 2]. We discuss more closely the latter
application in Section 7. As for the former one, which actually do not need the full
power of Theorem 2.4, the reader is referred to Section 9 of [9].

Finally, we stress that Theorems 2.2 and 2.4 can be extended to approximation
by elements of a given number field, a setting considered in [8].

3. Multidimensional extensions of the Cugiani–Mahler theorem

Our new proof of the Cugiani–Mahler theorem extends well to multidimensional
approximation and allows us to generalize it in several directions.

For a positive real number η and for irrational numbers ξ1, . . . , ξn , we say that
the positive integer q corresponds to a primitive solution of

q · ‖qξ1‖ · · · ‖qξn‖ < η

if, denoting by p j the nearest integer to qξ j for j = 1, . . . , n, the (n + 1)-tuple
(q, p1, . . . , pn) is primitive, that is, if the greatest common divisor of q, p1, . . . , pn
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is equal to 1. Observe that, for n = 1, the positive integer q corresponds to a primi-
tive solution of q · |qξ − p| < η if the rational p/q is written in reduced form.

Theorem 3.1. Let n be a positive integer and ξ1, . . . , ξn be real algebraic numbers
such that 1, ξ1, . . . , ξn are linearly independent over the rationals. Let ε : Z≥1 →
R>0 be a non-increasing function satisfying

lim
q→+∞

ε(q)

(log log q)−1/(2n+6)
= +∞.

Let (q j ) j≥1 be the sequence of positive integers corresponding to primitive solu-
tions of

q · ‖qξ1‖ · · · ‖qξn‖ < q−ε(q), (3.1)

ordered such that 1 ≤ q1 < q2 < . . . If this sequence is infinite, then

lim sup
j→+∞

log q j+1

log q j
= +∞. (3.2)

Theorem 3.1 provides a first step towards a (small) improvement on the first result
of Schmidt quoted in the Introduction.

The second statement of Schmidt quoted in the Introduction is an easy con-
sequence of a deep result from [29] asserting that, if ξ1, . . . , ξn are real algebraic
numbers such that 1, ξ1, . . . , ξn are linearly independent over the rationals, then,
for any positive ε, there are only finitely many non-zero integer (n + 1)-tuples
(p0, . . . , pn) with

|p0 + p1ξ1 + . . . + pnξn| < (max{|p0|, |p1|, . . . , |pn|})−n−ε.

Our next statement is an extension of the Cugiani–Mahler theorem to this setting.

Theorem 3.2. Let n be a positive integer and ξ1, . . . , ξn be real algebraic numbers
such that 1, ξ1, . . . , ξn are linearly independent over the rationals. Let ε : Z≥1 →
R>0 be a non-increasing function satisfying

lim
H→+∞

ε(H)

(log log H)−1/(2n+6)
= +∞.

Let (p0, j , p1, j , . . . , pn, j ) j≥1 be the sequence of primitive solutions of

|p0 + p1ξ1 + . . . + pnξn| < H−n−ε(H), H = max{|p0|, . . . , |pn|}, (3.3)

ordered such that 1 ≤ H1 ≤ H2 ≤ . . ., where Hj = max{|p0, j |, . . . , |pn, j |} for
j ≥ 1. If this sequence is infinite, then

lim sup
j→+∞

log Hj+1

log Hj
= +∞. (3.4)
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We display two corollaries of Theorem 3.2.
For an integer polynomial P(X), we denote by H(P) its height, that is, the

maximum of the absolute values of its coefficients. Recall that, if α is an algebraic
number, then its height, denoted by H(α), is the height of its minimal defining
polynomial over the ring of integers.

Corollary 3.3. Let n be a positive integer and ξ be a real algebraic number of
degree greater than n. Let ε : Z≥1 → R>0 be a non-increasing function satisfying

lim
H→+∞

ε(H)

(log log H)−1/(2n+6)
= +∞.

Let (Pj (X)) j≥1 be the sequence of distinct primitive, integer polynomials of degree
at most n that satisfy

|P(ξ)| < H(P)−n−ε(H(P)), (3.5)

ordered such that 1 ≤ H(P1) ≤ H(P2) ≤ . . . If this sequence is infinite, then

lim sup
j→+∞

log H(Pj+1)

log H(Pj )
= +∞. (3.6)

Next corollary provides a first step towards a (small) improvement on the second
result of Schmidt quoted in the Introduction.

Corollary 3.4. Let n be a positive integer and ξ be a real algebraic number of
degree greater than n. Let ε : Z≥1 → R>0 be a non-increasing function satisfying

lim
H→+∞

ε(H)

(log log H)−1/(2n+6)
= +∞.

Let (α j ) j≥1 be the sequence of distinct algebraic numbers of degree at most n that
satisfy

|ξ − α| < H(α)−n−1−ε(H(α)), (3.7)

ordered such that 1 ≤ H(α1) ≤ H(α2) ≤ . . . If this sequence is infinite, then

lim sup
j→+∞

log H(α j+1)

log H(α j )
= +∞. (3.8)

If one believes that algebraic numbers behave like almost all numbers as far as
approximation by algebraic numbers of larger degree is concerned, then results of
Beresnevich [5] and Bernik [6] imply that inequalities (3.5) and (3.7) with a non-
increasing function ε satisfying

lim
H→+∞

ε(H)

(log H)−1 (log log H)
> 1

should have only finitely many solutions.
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4. Auxiliary results

We begin this section by stating a version of the Liouville inequality that follows
from [34, Proposition 3.14].

Lemma 4.1. Let n be a positive integer and ξ1, . . . , ξn be real algebraic numbers
in a number field of degree D. If x1, . . . , xn are rational integers such that x1ξ1 +
. . . + xnξn is non-zero, then there exists a positive real number H, depending only
on n, ξ1, . . . , ξn, such that

|x1ξ1 + . . . + xnξn| ≥ (X H)−D,

where we have set X := max{|x1|, . . . , |xn|}.
The first explicit upper bound for the number of solutions to (1.1) was estab-

lished by Davenport and Roth [13] in 1955. It has been subsequently refined by
several authors, and the current best estimate has been obtained by Evertse [14].
We gather in the same statement his result and an estimate of Locher [19].

Theorem EL. Let S be a finite set of prime numbers and denote by s its cardinality.
Let ξ be an algebraic number of degree d with 0 < ξ < 1. Let ε be a positive real
number with ε < 1/5. The inequality

min

{
1,

∣∣∣∣ξ − p

q

∣∣∣∣
}

·
∏
�∈S

|pq|� <
1

q2+ε

has at most

N 1(ξ, ε) := e8s+26ε−s−5 log(6d) · log
(
ε−1 log(6d)

)
(4.1)

reduced rational solutions p/q with q ≥ max{44/ε,
√

d + 1 H(ξ)}. Moreover, if S
is empty, then (4.1) can be replaced by

N2(ξ, ε) := 2 · 107 ε−3(log ε−1)2 (log 4d) (log log 4d). (4.2)

Proof. Theorem 2 from [19] gives an upper bound for the number of reduced ratio-
nal solutions to

min

{
1,

∣∣∣∣ξ − p

q

∣∣∣∣
}

·
∏
�∈S1

|p|� ·
∏
�∈S2

|q|� <
1

q2+ε
,

where S1 and S2 are disjoint finite sets of prime numbers whose union is equal to
S. Since we have 2s choices for the pair (S1, S2), the bound (4.1) then follows.

Furthermore, the estimate established at the end of Section 6 from [14] im-
plies (4.2).
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At present, we do not have any general upper bound for the number of solu-
tions to the inequalities (1.5) and (1.6). However, if we define in (1.5) the integers
p1, . . . , pn by ||qξi || = |qξi − pi | for i = 1, . . . , n, an upper estimate for the num-
ber of proper rational subspaces of Qn+1 in which the (n+1)-tuples (q, p1, . . . , pn)

associated with the solutions of (1.5) are contained was obtained in a deep work of
Schmidt [32], who established a quantitative version of his Subspace theorem. We
state below a general result of Evertse and Schlickewei [15]. We refer to [15] for the
definition of the height of a linear form, a notion that will not be used in the present
paper.

Theorem ES. Let m ≥ 2 be an integer. Let L1, . . . , Lm be a linearly independent
system of linear forms with real algebraic coefficients, and let D be the degree of
the number field generated by their coefficients. We assume that

det(L1, . . . , Lm) = ±1.

Let H be an upper bound for the heights of the linear forms L1, . . . , Lm. Let ε

be a real number satisfying 0 < ε < 1. Then, the set of primitive solutions x =
(x1, . . . , xm) in Qm to the inequality

m∏
i=1

|Li (x)| < H(x)−ε

with
max{|x1|, . . . , |xm |} > max{m4m/ε, H}

lies in the union of at most

(3m)2m 23(m+9)2
ε−2m−4 (log 4D) (log log 4D)

proper subspaces of Qm.

Proof. This follows from Theorem 3.1 of Evertse and Schlickewei [15].

5. Proofs of Theorems 2.2 and 2.4 and of Corollary 2.3

Proof of Theorem 2.2. Keep the notation of Theorem 2.2. An almost forgotten re-
sult of Fatou [16] (see Grace [18] for a complete proof) asserts that if the rational
number a/b satisfies |ξ − a/b| < 1/b2, then there exists an integer n such that

a

b
belongs to

{
rn

sn
,

rn+1 + rn

sn+1 + sn
,

rn+2 − rn+1

sn+2 − sn+1

}
,

where (rn/sn)n≥1 is the sequence of convergents to ξ . Furthermore, it is well known
that

sn ≥ (
√

2)n−1, for n ≥ 1.
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Since by assumption |ξ − p j/q j | < 1/q2
j , the above observations imply that

q j ≥ 1.1 j , for j ≥ 2.

Let j be a positive integer, and denote by u the integer part of j/2. We take j
sufficiently large in order that qu ≥ √

d + 1 H(ξ). We can assume that ε(q j ) ≥
100 j−1, for otherwise the conclusion of the theorem clearly holds.

Consequently,

qu ≥ 1.03 j ≥ 42/ε(q j ),

and we infer from the last assertion of Theorem EL that

j

2
≤ j − u ≤ 2 · 107 ε(q j )

−3(log ε(q j )
−1)2 (log 4d) (log log 4d).

This gives the desired result.

Proof of Corollary 2.3. Let ξ be as in the statement of the corollary. Throughout
this proof, the constants implied by 	 and 
 may depend on ξ , but are inde-
pendent of j . Assuming that the sequence (p j/q j ) j≥1 is infinite, it follows from
Theorem 2.2 that

(logm+1 q j )
−1/3 (logm+2 q j ) 	 j−1/3 (log j)2/3, for j ≥ 1.

Thus, we have

(logm+1 q j ) (logm+2 q j )
−3 
 j (log j)−2, for j ≥ 1,

and

lim
j→+∞

logm+1 q j

j
= +∞. (5.1)

If
logm q j+1 	 logm q j , for j ≥ 1,

then an easy induction shows that

logm+1 q j 	 j, for j ≥ 1,

a contradiction with (5.1). This establishes the corollary.
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Proof of Theorem 2.4. Keep the notation of the theorem. Without any restriction,
we may assume that 0 < ξ < 1. Assume that there is an absolute constant C and an
infinite sequence (p j/q j ) j≥1 of reduced rational numbers with q j ≥ 1 that satisfy
(2.4) and

2 logm q j ≤ logm q j+1 ≤ C logm q j , for j ≥ 1. (5.2)

Let N be an integer and set ε = ε(qN ). Then, the inequality

min

{
1,

∣∣∣∣ξ − p

q

∣∣∣∣
}

·
∏
�∈S

|pq|� <
1

q2+ε

has at least N solutions and, provided that N is large enough, at least N/2 among
them have a denominator greater than max{44/ε,

√
d + 1 H(ξ)}, where d is the de-

gree of ξ . The constants implied by 	 occurring below depend at most on ξ and s,
and are independent of N . We infer from Theorem EL that there exists a positive
real number η′ such that

N 	 (
ε(qN )

)−s−5 · log
(
ε−1(qN )

) ≤ (
ε(qN )

)−s−5−η/2 ≤ (logm+1 qN )1−η′
, (5.3)

for N sufficiently large. Furthermore, it follows from (5.2) that

logm+1 qN 	 N . (5.4)

The combination of (5.3) and (5.4) gives a contradiction.
This proves the theorem.

6. Proofs of Theorems 3.1 and 3.2 and their corollaries

Proof of Theorem 3.1. Under the assumptions of Theorem 3.1, we suppose that
there are infinitely many solutions to (3.1), but that (3.2) does not hold. Conse-
quently, by extracting suitably a subsequence from the set of primitive solutions
to (3.1), there exist a real number C and an infinite sequence of primitive integer
(n + 1)-tuples x j = (q j , p1, j , . . . , pn, j ) such that, for every j ≥ 1, the integer q j
is positive,

q j · |q jξ1 − p1, j | · · · |q jξn − pn, j | ≤ q
−ε(q j )

j ,

and
H2

j ≤ Hj+1 ≤ HC
j , (6.1)

where we have set Hj := max{q j , |p1, j |, . . . |pn, j |}.
We will ultimately derive a contradiction. Throughout the present proof, D de-

notes the degree of the number field generated by ξ1, . . . , ξn . The constants implied
by 	, 
 depend at most on C , n, ξ1, . . . , ξn .

Let c1 be a positive real number to be fixed later on. Let N0 be a (large) integer
such that, for any q ≥ qN0 , we have

ε(q) ≥ c1 (log log q)−1/(2n+6).
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Let N ≥ N0 be an even integer and set

ε = ε(qN ).

Consider the n + 1 linearly independent linear forms

L0(X) = X0, L1(X) = ξ1 X0 − X1, . . . , Ln(X) = ξn X0 − Xn.

Let H be an upper bound for the heights of the linear forms Li , i = 0, . . . , n. Our
assumption implies that, for N large enough, the equation

n∏
i=0

|Li (x)| < H(x)−n−ε/2

has at least 1 + N/2 primitive (integer) solutions x = (x0, x1, . . . , xn) with

max{|x0|, . . . , |xn|} > (n + 1)4(n+1)/ε + H,

namely the (n + 1)-tuples x j , with N/2 ≤ j ≤ N . By Theorem ES, these 1 + N/2
tuples are contained in the union of at most c2 ε−2n−6 rational proper subspaces of
Qn+1, where c2 = c2(D, n) depends only on D and n.

Furthermore, we infer from (6.1) that

log log qN ≤ N log(C H1),

thus, by our choice of ε,

c2 ε−2n−6 ≤ c−2n−6
1 c2 (log log qN ) ≤ c−2n−6

1 c2 N log(C H1).

Choose c1 large enough in order to satisfy

2 c−2n−6
1 c2 n(n + 1)D log(C H1) < 1.

Then, the primitive (n+1)-tuples x j with N/2 ≤ j ≤ N are contained in a union of
less than N/(2n(n + 1)D) proper rational subspaces of Qn+1. Consequently, if N
is large enough, then there exists a proper rational subspace of Qn+1 that contains
at least t := n(n + 1)D of these tuples, namely the tuples x j1, . . . , x jt , where
N/2 ≤ j1 < . . . < jt ≤ N . Set M = nD. For k = 1, . . . , n + 1, let Vk be the
rational subspace spanned by x j1, . . . , x jk M . Since dim V1 ≥ 1 and dim Vn+1 ≤ n,
there exists k such that 1 ≤ k ≤ n and Vk = Vk+1. Consequently, there exists an
integer (n + 1)-tuple (z0, z1, . . . , zn) such that

z0q jh + z1 p1, jh + . . . + zn pn, jh = 0, for h = 1, . . . , (k + 1)M, (6.2)

and
Z := max{|z0|, . . . , |zn|} 	 Hn

jk M
. (6.3)
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Since, by assumption, we have

|q jξi − pi, j | ≤ 1, for 1 ≤ i ≤ n and 1 ≤ j ≤ N ,

we deduce from (6.2) that

nZ ≥ |z1(q jh ξ1 − p1, jh ) + . . . + zn(q jh ξn − pn, jh )|
= q jh |z0 + z1ξ1 + . . . + znξn|, for h = k M + 1, . . . , (k + 1)M .

(6.4)

Since ξ1, . . . , ξn are algebraic, we infer from Lemma 4.1 and (6.3) that

|z0 + z1ξ1 + . . . + znξn| 
 Z−D 
 H−nD
jk M

. (6.5)

It follows from (6.3), (6.4) and (6.5) that q j(k+1)M is bounded in terms of Hjk M ,
namely that we have

Hj(k+1)M 	 q j(k+1)M 	 Hn(D+1)
jk M

. (6.6)

However, the gap condition (6.1) yields

Hj(k+1)M ≥ H2M

jk M
. (6.7)

Our choice M = nD implies that (6.6) and (6.7) do not hold simultaneously when
Hjk M is large enough, that is, when N is large enough. We have reached a contra-
diction. Thus, the sequence (log Hj+1/ log Hj ) j≥1 cannot be bounded. This estab-
lishes the theorem, since q j 	 Hj 	 q j for j ≥ 1.

For the proof of Theorem 3.2, we need an auxiliary result.

Lemma 6.1. Let n be a positive integer and let ξ1, . . . , ξn be real algebraic num-
bers such that 1, ξ1, . . . , ξn are linearly independent over the rationals. Let ε be
a positive real number. Assume that there are M primitive integer (n + 1)-tuples
p j := (p0, j , p1, j , . . . , pn, j ) such that

|p0, j + p1, jξ1 + . . . + pn, jξn| < H−n−ε
j ,

H1 ≥ max{H(ξ1), . . . , H(ξn)},
and

H2
j ≤ Hj+1, for j = 1, . . . , M,

where we have set

Hj := max{|p0, j |, |p1, j |, . . . , |pn, j |}, for j = 1, . . . , M .

Then, M is bounded effectively in terms of ε and of the degree of the field generated
by ξ1, . . . , ξn.
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Proof. The proof goes by induction on n. The lemma is a direct consequence of
Theorem EL if n = 1. Let n ≥ 2 be an integer, and assume that the lemma holds
for every positive integer less than n.

The integers c1, c2, . . . occurring below depend at most on ε and on the degree
of the field generated by ξ1, . . . , ξn .

Consider the n + 1 linearly independent linear forms

L0(X) = X0 + ξ1 X1 + . . . + ξn Xn, L1(X) = X1, . . . , Ln(X) = Xn.

Our assumption implies that the equation

n∏
i=0

|Li (x)| < H(x)−n−ε

has at least M primitive solutions.
We infer from Theorem ES that, for M ≥ c1, the (n+1)-tuples p j with M/2 ≤

j ≤ M are lying in the union of at most c2 proper subspaces of Qn+1. Let y0 X0 +
. . . + yn Xn = 0 be one of these subspaces, and assume that it contains the (n + 1)-
tuples p j1, p j2, . . . , p jt , where M/2 ≤ j1 < j2 < . . . < jt ≤ M and t = 2(n+1)c3.
Set L = 2c3. For k = 1, . . . , n + 1, let Vk be the rational subspace spanned by
p j1, . . . , p jkL . Since dim V1 ≥ 1 and dim Vn+1 ≤ n, there exists k such that 1 ≤ k ≤
n and Vk = Vk+1. Consequently, there exists an integer (n+1)-tuple (z0, z1, . . . , zn)

such that

z0 p0, jh + z1 p1, jh + . . . + zn pn, jh = 0, for h = 1, . . . , (k + 1)L, (6.8)

and
Z := max{|z0|, . . . , |zn|} ≤ c4 Hn

jkL
.

Let h be an integer such that kL ≤ h ≤ (k + 1)L . By (6.8) and

|p0, jh + p1, jh ξ1 + . . . + pn, jh ξn| < H−n−ε
jh

,

we get that

|p0, jh (z0ξn−zn)+p1, jh (z1ξn−znξ1)+. . .+pn−1, jh (zn−1ξn−znξn−1)| < Z ·H−n−ε
jh

.

Without any loss of generality, we may assume that (z0, zn) �= (0, 0). Set

ζi = ziξn − znξi

z0ξn − zn
, for i = 1, . . . , n − 1.

Observe that, for c3 large enough, we have

Z ≤ H1/2
j(k+1/2)L

and Hj(k+1/2)L ≥ max{H(ζ1), . . . , H(ζn−1)}.



492 YANN BUGEAUD

For h = kL + L/2, . . . , (k + 1)L , the n-tuple (p0, jh , p1, jh , . . . , pn−1, jh ) has no
reason to be primitive. However, it follows from (6.8) and from the primitivity of
p jh that the greatest common divisor of p0, jh , . . . , pn−1, jh cannot exceed Z . Since
we have

0 < |p0, jh + p1, jh ζ1 + . . . + pn−1, jh ζn−1| < H−(n−1)−1/2
jh

,

for h = kL + L/2, . . . , (k + 1)L,

it follows from our hypothesis of induction that L ≤ c5. Consequently, M ≤ c6, as
asserted.

We are now in position to establish Theorem 3.2.

Proof of Theorem 3.2. We assume that the sequence of solutions to (3.3) is in-
finite and does not satisfy the gap condition (3.4). Consequently, by extracting
suitably a subsequence from the set of primitive solutions to (3.3), there exist a
real number C and an infinite sequence of primitive integer (n + 1)-tuples p j :=
(p0, j , p1, j , . . . , pn, j ) such that

|p0, j + p1, jξ1 + . . . + pn, jξn| ≤ H
−n−ε(Hj )

j

and
H2

j ≤ Hj+1 ≤ HC
j , for j ≥ 1, (6.9)

where we have set

Hj := max{|p0, j |, |p1, j |, . . . , |pn, j |}, for j ≥ 1.

Throughout the present proof, D denotes the degree of the number field generated
by ξ1, . . . , ξn .

Let c1 be a positive real number to be fixed later on. Let N0 be a (large) integer
such that, for any H ≥ HN0 , we have

ε(H) ≥ c1 (log log H)−1/(2n+6).

Let N ≥ N0 be an even integer, and set

ε = ε(HN ).

Consider the n + 1 linearly independent linear forms

L0(X) = X0 + ξ1 X1 + . . . + ξn Xn, L1(X) = X1, . . . , Ln(X) = Xn.

Let H be an upper bound for the heights of the linear forms Li , i = 0, . . . , n. Our
assumption implies that, for N large enough, the equation

n∏
i=0

|Li (x)| < H(x)−n−ε/2
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has at least 1 + N/2 primitive (integer) solutions x = (x0, x1, . . . , xn) with

max{|x0|, . . . , |xn|} > (n + 1)4(n+1)/ε + H,

namely the (n + 1)-tuples p j , with N/2 ≤ j ≤ N . By Theorem ES, these 1 + N/2
tuples are contained in the union of at most c2 ε−2n−6 rational proper subspaces of
Qn+1, where c2 depends only on n and D.

Furthermore, we infer from (6.9) that

log log HN ≤ N log(C H1),

thus
c2 ε−2n−6 = c−2n−6

1 c2 (log log qN ) ≤ c−2n−6
1 c2 N log(C H1).

Let M be an even integer to be fixed later on. Choose c1 large enough in order to
satisfy

2 c−2n−6
1 c2 (n + 1)M log(C H1) < 1.

Then, the primitive (n + 1)-tuples p j with N/2 ≤ j ≤ N are contained in a union
of less than N/(2(n + 1)M) proper subspaces and, for N large enough, at least one
of these subspaces contains (at least) M(n +1) of the tuples p j with N/2 ≤ j ≤ N .
We proceed exactly as in the proof of Theorem 3.1 and we get that there exists an
integer (n + 1)-tuple (z0, z1, . . . , zn) such that

z0 p0, jh + z1 p1, jh + . . . + zn pn, jh = 0, for h = 1, . . . , (k + 1)M, (6.10)

and
Z := max{|z0|, . . . , |zn|} ≤ c3 Hn

jk M
,

for some c3 depending only on n. By (6.10) and

|p0, jh + p1, jh ξ1 + . . . + pn, jh ξn| ≤ H−n−ε
jh

,

we get that

|p0, jh (z0ξn−zn)+p1, jh (z1ξn−znξ1)+. . .+pn−1, jh (zn−1ξn−znξn−1)| ≤ Z ·H−n−ε
jh

.

Without any loss of generality, we may assume that (z0, zn) �= (0, 0). Set

ζi = ziξn − ξi zn

z0ξn − zn
, for i = 1, . . . , n − 1,

and select M sufficiently large in order that

Z , H(ζ1), . . . , H(ζn−1) ≤ H1/2
jk M+M/2

.

Then, we get

0 < |p0, jh + p1, jh ζ1 + . . . + pn−1, jh ζn−1| < H−(n−1)−1/2
jh

,

for h = k M + M/2, . . . , (k + 1)M .

Selecting M sufficiently large in terms of D, we have reached a contradiction with
Lemma 6.1. This establishes the theorem.
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Proofs of Corollaries 3.3 and 3.4. Applying Theorem 3.2 with ξi = ξ i , for i =
1, . . . , n, we get Corollary 3.3. Furthermore, under the assumption of Corollary
3.4, if we denote by Pj (X) the minimal defining polynomial of α j over the integers,
then it is easily seen that

|Pj (ξ)| < H(Pj )
−n−ε(H(Pj ))/2

holds for any sufficiently large j . By Corollary 3.3, we get (3.6), that is, (3.8), by
definition of the height of an algebraic number.

7. Fractional parts of powers of rational numbers

Let p and q be coprime integers with p > q ≥ 2. Let ε be a positive real number.
Applying a theorem of Ridout [23], Mahler [20] proved that

∥∥∥∥
(

p

q

)n∥∥∥∥ ≥ 2−εn

holds for every sufficiently large integer n. Here, as above, ‖ ·‖ denotes the distance
to the nearest integer.

The application of the Cugiani–Mahler theorem yields further results on the
fractional parts ‖(p/q)n‖, as pointed out by Mahler in his monograph [21, Theorem
2, page 176]; see also [22, Théorème 2]). However, in both works, there is an extra
assumption on the rational p/q, namely that p is prime.

In this Section, we show that our Theorem 2.4 above allows us to remove this
assumption and to obtain a result comparable to that of Mahler and Mignotte.

Theorem 7.1. Let p and q be coprime integers with p > q ≥ 2. Let s be the
number of distinct prime divisors of pq. Let m be a non-negative integer. Let δ be
a positive real number such that δ < 1/(s + 5). If there exists a strictly increasing
sequence n1 < n2 < . . . of positive integers such that

∥∥∥∥
(

p

q

)n j
∥∥∥∥ ≤ exp

{
− n j

(logm+1 n j )δ

}
, for j ≥ 1,

then

lim sup
j→+∞

logm n j+1

logm n j
= +∞.

Proof. Throughout this proof, the constants implied by 	 and 
 depend at most
on p and q. For n ≥ 1, let gn be the nearest integer to (p/q)n . Let dn be the greatest
common divisor of pn and gnqn , and define

Pn = pn

dn
, Qn = gn

dn
qn.
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Let S be the set of prime divisors of pq. For a positive integer x , we write |x |S for
the product of the |x |� over all the prime numbers � in S. Following Mahler’s proof,
we have

|Pn Qn|S = P−1
n · |Qn|S ≤ P−1

n · q−n 	 Q−1−(log q)/(log p)
n ,

gn 
 Q1−(log q)/(log p)
n , qn ≤ Qn 	 pn.

From our assumption, for j sufficiently large, we have
∣∣∣∣1 − Pn j

Qn j

∣∣∣∣ · |Pn j Qn j |S = 1

gn j

∣∣∣∣
(

p

q

)n j

− gn j

∣∣∣∣ · |Pn j Qn j |S

≤ 1

gn j

exp

{
− n j

(logm+1 n j )δ

}
· |Pn j Qn j |S

	 Q
−2−c(logm+2 Qn j )

−δ

n j ,

for some positive constant c. Applying Theorem 2.4 with ξ = 1, we get at once
Theorem 7.1.

The results of Mahler and Mignotte, valid only when p is prime, do not depend
on the number of prime divisors of q. To achieve this, these authors apply instead
of Theorem 2.4 a version of the Cugiani–Mahler theorem in which (2.4) is replaced
by a system of inequalities. However, we were unable to get Theorem 7.1 in its full
generality with this tool, and we needed a version of the Cugiani–Mahler theorem
with a product, as in the left-hand side of (2.4).

8. Final remarks

An important application of the method developed in the present paper is concerned
with the block complexity of irrational, algebraic numbers. Let b ≥ 2 be an integer
and ξ be an irrational, algebraic number with 0 < ξ < 1. There exists a unique
infinite sequence a = (a j ) j≥1 of integers from {0, 1, . . . , b − 1}, called the b-ary
expansion of ξ , such that

ξ =
∑
j≥1

a j

b j
.

A natural way to measure the complexity of ξ (in base b) is to count the number
of distinct blocks of given length in the infinite word a. To this end, for an infinite
word w on the alphabet {0, 1, . . . , b−1} and for a positive integer n, we let p(n, w)

denote the number of distinct blocks of n letters occurring in w. Furthermore, we set
p(n, ξ, b) = p(n, a) with a as above. In 1997 Ferenczi and Mauduit [17] applied a
non-Archimedean extension of Roth’s theorem established by Ridout [23] to show
(see also [4]) that

lim
n→+∞

(
p(n, ξ, b) − n

) = +∞.
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Then, a new combinatorial transcendence criterion proved with the help of the
Schmidt Subspace theorem (precisely, its non-Archimedean extension) by Adam-
czewski, Bugeaud, and Luca [3] enabled Adamczewski and Bugeaud [2] to estab-
lish that

lim
n→+∞

p(n, ξ, b)

n
= +∞. (8.1)

By using the Quantitative Subspace theorem (precisely, its non-Archimedean ex-
tension from [15]) in a similar way as in the proofs of Theorems 3.1 and 3.2, it is
possible to complement (8.1) by establishing that, for any positive real number ε,
we have

lim sup
n→+∞

p(n, ξ, b)

n(log n)−ε+1/(4ω(b)+15)
= +∞, (8.2)

where ω(b) denotes the number of distinct prime factors of b. However, it turns
out that, by means of a more careful use of the Quantitative Subspace theorem, the
dependence on b in (8.2) can be removed. Namely, it is proved in [9] that (8.2) holds
with 1/(4ω(b) + 15) replaced by 1/11.

Likewise, we may improve the lower bound for the complexity of irrational
p-adic algebraic numbers established in [2, Theorem 1B].

The approach followed in the present paper can be used to get new, explicit
examples of transcendental continued fractions, in the same spirit as in [1]. This
will be the subject of a forthcoming note.

To conclude, we wish to emphasize an important open question:

To find an upper bound for the number of solutions to (1.6).

At present, this question has been solved only when the exponent −n − 1 − ε is
strictly smaller than −2n, see [14, 19].
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