Self-similarly expanding networks to curve shortening flow
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 6 (2007) no. 4, pp. 511-528.

We consider a network in the Euclidean plane that consists of three distinct half-lines with common start points. From that network as initial condition, there exists a network that consists of three curves that all start at one point, where they form 120 degree angles, and expands homothetically under curve shortening flow. We also prove uniqueness of these networks.

Classification: 53C44, 35Q51, 74K30, 74N20
@article{ASNSP_2007_5_6_4_511_0,
     author = {Schn\"urer, Oliver C. and Schulze, Felix},
     title = {Self-similarly expanding networks to curve shortening flow},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {511--528},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 6},
     number = {4},
     year = {2007},
     mrnumber = {2394409},
     zbl = {1139.53031},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_2007_5_6_4_511_0/}
}
TY  - JOUR
AU  - Schnürer, Oliver C.
AU  - Schulze, Felix
TI  - Self-similarly expanding networks to curve shortening flow
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2007
SP  - 511
EP  - 528
VL  - 6
IS  - 4
PB  - Scuola Normale Superiore, Pisa
UR  - http://archive.numdam.org/item/ASNSP_2007_5_6_4_511_0/
LA  - en
ID  - ASNSP_2007_5_6_4_511_0
ER  - 
%0 Journal Article
%A Schnürer, Oliver C.
%A Schulze, Felix
%T Self-similarly expanding networks to curve shortening flow
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2007
%P 511-528
%V 6
%N 4
%I Scuola Normale Superiore, Pisa
%U http://archive.numdam.org/item/ASNSP_2007_5_6_4_511_0/
%G en
%F ASNSP_2007_5_6_4_511_0
Schnürer, Oliver C.; Schulze, Felix. Self-similarly expanding networks to curve shortening flow. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 6 (2007) no. 4, pp. 511-528. http://archive.numdam.org/item/ASNSP_2007_5_6_4_511_0/

[1] K. A. Brakke, “The Motion of a Surface by its Mean Curvature”, Mathematical Notes, Vol. 20, Princeton University Press, Princeton, N.J., 1978. | MR | Zbl

[2] L. Bronsard and F. Reitich, On three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation, Arch. Ration. Mech. Anal. 124 (1993), 355-379. | MR | Zbl

[3] K. Ecker and G. Huisken, Mean curvature evolution of entire graphs, Ann. of Math. 130 (1989), 453-471. | MR | Zbl

[4] K. Ecker and G. Huisken, Interior estimates for hypersurfaces moving by mean curvature, Invent. Math. 105 (1991), 547-569. | MR | Zbl

[5] M. E. Gage and R. S. Hamilton, The heat equation shrinking convex plane curves, J. Differential Geom. 23 (1986), 69-96. | MR | Zbl

[6] M. A. Grayson, The heat equation shrinks embedded plane curves to points, J. Differential Geom. 26 (1987), 285-314. | MR | Zbl

[7] G. Huisken, A distance comparison principle for evolving curves, Asian J. Math. 2 (1998), 127-133. | MR | Zbl

[8] T. Ilmanen, “Lectures on Mean Curvature Flow and Related Equations”, 1998, available from http://www.math.ethz.ch/ilmanen/

[9] C. Mantegazza, M. Novaga and V. M. Tortorelli, Motion by curvature of planar networks, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 3 (2004), 235-324. | Numdam | MR | Zbl

[10] R. Mazzeo and M. Sáez, Self similar expanding solutions of the planar network flow, arXiv:0704.3113v1 [math.DG]. | MR | Zbl

[11] N. Stavrou, Selfsimilar solutions to the mean curvature flow, J. Reine Angew. Math. 499 (1998), 189-198. | MR | Zbl

[12] B. Von Querenburg, “Mengentheoretische Topologie”, Springer-Verlag, Berlin, 1973, Hochschultext. | MR | Zbl