We construct an upper bound for the following family of functionals , which arises in the study of micromagnetics:
@article{ASNSP_2007_5_6_4_673_0, author = {Poliakovsky, Arkady}, title = {Sharp upper bounds for a singular perturbation problem related to micromagnetics}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {673--701}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 6}, number = {4}, year = {2007}, mrnumber = {2394415}, zbl = {1150.49006}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2007_5_6_4_673_0/} }
TY - JOUR AU - Poliakovsky, Arkady TI - Sharp upper bounds for a singular perturbation problem related to micromagnetics JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2007 SP - 673 EP - 701 VL - 6 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2007_5_6_4_673_0/ LA - en ID - ASNSP_2007_5_6_4_673_0 ER -
%0 Journal Article %A Poliakovsky, Arkady %T Sharp upper bounds for a singular perturbation problem related to micromagnetics %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2007 %P 673-701 %V 6 %N 4 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2007_5_6_4_673_0/ %G en %F ASNSP_2007_5_6_4_673_0
Poliakovsky, Arkady. Sharp upper bounds for a singular perturbation problem related to micromagnetics. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 6 (2007) no. 4, pp. 673-701. http://archive.numdam.org/item/ASNSP_2007_5_6_4_673_0/
[1] Line energies for gradient vector fields in the plane, Calc. Var. Partial Differential Equations 9 (1999), 327-355. | MR | Zbl
, and ,[2] “Functions of Bounded Variation and Free Discontinuity Problems”, Oxford Mathematical Monographs, Oxford University Press, New York, 2000. | MR | Zbl
, and ,[3] A mathematical problem related to the physical theory of liquid crystal configurations, Proc. Centre Math. Anal. Austral. Nat. Univ. 12 (1987), 1-16. | MR
and ,[4] On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg-Landau type energy for gradient fields, Proc. Roy. Soc. Edinburgh Sect. A 129 (1999), 1-17. | MR | Zbl
and ,[5] Sharp upper bounds for a variational problem with singular perturbation, Math. Ann. 338 (2007), 119-146. | MR | Zbl
and ,[6] Lifting of functions with values in , C. R. Math. Acad. Sci. Paris 337 (2003) 159-164. | MR | Zbl
and ,[7] An example in the gradient theory of phase transitions ESAIM Control Optim. Calc. Var. 7 (2002), 285-289 (electronic). | Numdam | MR | Zbl
,[8] A compactness result in the gradient theory of phase transitions, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), 833-844. | MR | Zbl
, , and ,[9] The geometry of the phase diffusion equation, J. Nonlinear Sci. 10 (2000), 223-274. | MR | Zbl
, , and ,[10] “Partial Differential Equations”, Graduate Studies in Mathematics, Vol. 19, American Mathematical Society, 1998. | MR | Zbl
,[11] “Measure Theory and Fine Properties of Functions”, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. | MR | Zbl
and ,[12] “Elliptic Partial Differential Equations of Elliptic Type”, 2nd ed., Springer-Verlag, Berlin-Heidelberg, 1983. | MR | Zbl
and ,[13] “Minimal Surfaces and Functions of Bounded Variation”, Monographs in Mathematics, Vol. 80, Birkhäuser Verlag, Basel, 1984. | MR | Zbl
,[14] Singular perturbation and the energy of folds, J. Nonlinear Sci. 10 (2000), 355-390. | MR | Zbl
and ,[15] A method for establishing upper bounds for singular perturbation problems, C. R. Math. Acad. Sci. Paris 341 (2005), 97-102. | MR | Zbl
,[16] Upper bounds for singular perturbation problems involving gradient fields, J. Eur. Math. Soc. 9 (2007), 1-43. | MR | Zbl
,[17] A general technique to prove upper bounds for singular perturbation problems, submitted to Journal d'Analyse. | Zbl
,[18] Limiting domain wall energy for a problem related to micromagnetics, Comm. Pure Appl. Math. 54 (2001), 294-338. | MR | Zbl
and ,[19] Compactness, kinetic formulation and entropies for a problem related to mocromagnetics, Comm. Partial Differential Equations 28 (2003), 249-269. | MR | Zbl
and ,[20] “Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics”, Martinus Nijhoff Publishers, Dordrecht, 1985. | MR | Zbl
and ,