Convex integration and the L p theory of elliptic equations
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 7 (2008) no. 1, p. 1-50

This paper deals with the L p theory of linear elliptic partial differential equations with bounded measurable coefficients. We construct in two dimensions examples of weak and so-called very weak solutions, with critical integrability properties, both to isotropic equations and to equations in non-divergence form. These examples show that the general L p theory, developed in [1, 24] and [2], cannot be extended under any restriction on the essential range of the coefficients. Our constructions are based on the method of convex integration, as used by S. Müller and V. Šverák in [30] for the construction of counterexamples to regularity in elliptic systems, combined with the staircase type laminates introduced in [15].

Classification:  30C62,  35D10,  39J40
@article{ASNSP_2008_5_7_1_1_0,
     author = {Astala, Kari and Faraco, Daniel and Sz\'ekelyhidi Jr., L\'aszl\'o},
     title = {Convex integration and the $L^p$ theory of elliptic equations},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 7},
     number = {1},
     year = {2008},
     pages = {1-50},
     zbl = {1164.30014},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2008_5_7_1_1_0}
}
Astala, Kari; Faraco, Daniel; Székelyhidi Jr., László. Convex integration and the $L^p$ theory of elliptic equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 7 (2008) no. 1, pp. 1-50. http://www.numdam.org/item/ASNSP_2008_5_7_1_1_0/

[1] K. Astala, Area distortion of quasiconformal mappings, Acta Math. 173 (1994), 37-60. | MR 1294669 | Zbl 0815.30015

[2] K. Astala, T. Iwaniec and G. Martin, Pucci's conjecture and the Alexandrov inequality for elliptic PDEs in the plane, J. Reine Angew. Math. 591 (2006), 49-74. | MR 2212879 | Zbl 1147.35021

[3] K. Astala, T. Iwaniec and G. Martin, “Elliptic Partial Diffential Equations and Quasiconformal Mappings in the Plane”, to appear. | MR 2472875 | Zbl 1182.30001

[4] K. Astala, T. Iwaniec and E. Saksman, Beltrami operators in the plane, Duke Math. J. 107 (2001), 27-56. | MR 1815249 | Zbl 1009.30015

[5] A. Baernstein Ii and L. V. Kovalev On Hölder regularity for elliptic equations of non-divergence type in the plane, Ann. Scuola Norm. Super. Pisa Cl. Sci. (5) (2005), 295-317. | Numdam | MR 2163558 | Zbl 1150.35021

[6] B. Bojarski, Homeomorphic solutions of Beltrami systems, Dokl. Akad. Nauk SSSR (N.S.) 102 (1955), 661-664. | MR 71620

[7] B. Bojarski, Generalized solutions of a system of differential equations of first order and of elliptic type with discontinuous coefficients, Mat. Sb. N.S. 43 (1957), 451-503. | MR 106324

[8] S. Conti, D. Faraco and F. Maggi, A new approach to counterexamples to L 1 estimates: Korn’s inequality, geometric rigidity, and regularity for gradients of separately convex functions, Arch. Ration. Mech. Anal. 175 (2005), 287-300. | MR 2118479 | Zbl 1080.49026

[9] S. Conti, D. Faraco, F. Maggi and S. Müller, Rank-one convex functions on 2×2 symmetric matrices and laminates on rank-three lines, Calc. Var. Partial Differential Equations 24 (2005), 479-493. | MR 2180863 | Zbl 1135.26301

[10] B. Dacorogna, “Direct Methods in the Calculus of Variations”, Applied Mathematical Sciences, Vol. 78, Springer-Verlag, Berlin, 1989. | MR 990890 | Zbl 0703.49001

[11] B. Dacorogna and P. Marcellini, General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial cases, Acta Math. 178 (1997), 1-37. | MR 1448710 | Zbl 0901.49027

[12] B. Dacorogna and P. Marcellini, “Implicit partial differential equations”, Progress in Nonlinear Differential Equations and their Applications, Vol. 37, Birkhäuser Boston Inc., Boston, MA, 1999. | MR 1702252 | Zbl 0938.35002

[13] O. Dragičević and A. Volberg, Sharp estimate of the Ahlfors-Beurling operator via averaging martingale transforms, Michigan Math. J. 51 (2003), 415-435. | MR 1992955 | Zbl 1056.42011

[14] D. Faraco, “Quasiconvex Hulls and the Homogenization of Differential Operators”, Licenciate thesis, University of Jyväskylä, 2000.

[15] D. Faraco, Milton's conjecture on the regularity of solutions to isotropic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), 889-909. | Numdam | MR 1995506 | Zbl 1029.30012

[16] D. Faraco, Tartar conjecture and Beltrami operators, Michigan Math. J. 52 (2004), 83-104. | MR 2043398 | Zbl 1091.30011

[17] D. Faraco and L. Székelyhidi Jr., in preparation.

[18] M. Gromov, “Partial differential relations”, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 9, Springer-Verlag, Berlin, 1986. | MR 864505 | Zbl 0651.53001

[19] T. Iwaniec and G. Martin, “Geometric Function Theory and Non-Linear Analysis”, Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 2001. | MR 1859913 | Zbl 1045.30011

[20] T. Iwaniec and C. Sbordone, Weak minima of variational integrals, J. Reine Angew. Math. 454 (1994), 143-161. | MR 1288682 | Zbl 0802.35016

[21] B. Kirchheim, “Rigidity and Geometry of Microstructures”, Habilitation thesis, University of Leipzig, 2003.

[22] B. Kirchheim, S. Müller and V. Šverák, Studying nonlinear PDE by geometry in matrix space, In: “Geometric analysis and Nonlinear partial differential equations”, S. Hildebrandt and H. Karcher (eds.), Springer-Verlag, 2003, 347-395. | MR 2008346 | Zbl pre01944370

[23] O. Lehto and K. I. Virtanen, “Quasiconformal Mappings in the Plane”, second ed. Springer-Verlag, New York, 1973. Translated from the German by K. W. Lucas, Die Grundlehren der mathematischen Wissenschaften, Band 126. | MR 344463 | Zbl 0267.30016

[24] F. Leonetti and V. Nesi, Quasiconformal solutions to certain first order systems and the proof of a conjecture of G. W. Milton, J. Math. Pures Appl. (9) 76 (1997), 109-124. | MR 1432370 | Zbl 0869.35019

[25] J. Malý, Examples of weak minimizers with continuous singularities, Expo. Math. 13 (1995), 446-454. | MR 1362870 | Zbl 0849.35023

[26] N. G. Meyers, An L p -estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 17 (1963), 189-206. | Numdam | MR 159110 | Zbl 0127.31904

[27] G. W. Milton, Modelling the properties of composites by laminates, In: “Homogenization and Effective Moduli of Materials and Media” (Minneapolis, Minn., 1984/1985), IMA Vol. Math. Appl., Vol. 1, Springer, New York, 1986, 150-174. | MR 859415 | Zbl 0631.73011

[28] S. Müller, Variational models for microstructure and phase transitions, In: “Calculus of Variations and Geometric Evolution Problems”, (Cetraro, 1996), Lecture Notes in Math., Vol. 1713, Springer, Berlin, 1999, 85-210. | MR 1731640 | Zbl 0968.74050

[29] S. Müller and V. Šverák, Attainment results for the two-well problem by convex integration, In: “Geometric Analysis and the Calculus of Variations”, Internat. Press, Cambridge, MA, 1996, 239-251. | MR 1449410 | Zbl 0930.35038

[30] S. Müller and V. Šverák, Convex integration for Lipschitz mappings and counterexamples to regularity, Ann. of Math. (2) 157 (2003), 715-742. | MR 1983780 | Zbl 1083.35032

[31] J. C. Oxtoby, “Measure and Category”, second ed., Graduate Texts in Mathematics, Vol. 2, Springer-Verlag, New York, 1980. | MR 584443 | Zbl 0435.28011

[32] P. Pedregal, Laminates and microstructure, European J. Appl. Math. 4 (1993), 121-149. | MR 1228114 | Zbl 0779.73050

[33] P. Pedregal, Fully explicit quasiconvexification of the mean-square deviation of the gradient of the state in optimal design, Electron. Res. Announc. Amer. Math. Soc. 7 (2001), 72-78. | MR 1856792 | Zbl 0980.49021

[34] S. Petermichl and A. Volberg, Heating of the Ahlfors-Beurling operator: weakly quasiregular maps on the plane are quasiregular, Duke Math. J. 112 (2002), 281-305. | MR 1894362 | Zbl 1025.30018

[35] L. C. Piccinini and S. Spagnolo, On the Hölder continuity of solutions of second order elliptic equations in two variables, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 26 (1972), 391-402. | Numdam | MR 361422 | Zbl 0237.35028

[36] C. Pucci, Operatori ellittici estremanti, Ann. Mat. Pura Appl. (4) 72 (1966), 141-170. | MR 208150 | Zbl 0154.12402

[37] J. Serrin, Pathological solutions of elliptic differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 18 (1964), 385-387. | Numdam | MR 170094 | Zbl 0142.37601

[38] M. A. Sychev, Comparing two methods of resolving homogeneous differential inclusions, Calc. Var. Partial Differential Equations 13 (2001), 213-229. | MR 1861098 | Zbl 0994.35038

[39] M. A. Sychev, Few remarks on differential inclusions, Proc. Roy. Soc. Edinburgh Sect. A 136 (2006), 649-668. | MR 2227812 | Zbl 1106.35153

[40] L. Székelyhidi Jr., The regularity of critical points of polyconvex functionals, Arch. Ration. Mech. Anal. 172 (2004), 133-152. | MR 2048569 | Zbl 1049.49017

[41] L. Tartar, L. Compensated compactness and applications to partial differential equations, In: “Nonlinear Analysis and Mechanics: Heriot-Watt Symposium”, Vol. IV, Res. Notes in Math., Vol. 39, Pitman, Boston, Mass., 1979, 136-212. | MR 584398 | Zbl 0437.35004

[42] B. Yan, A linear boundary value problem for weakly quasiregular mappings in space, Calc. Var. Partial Differential Equations 13 (2001), 295-310. | MR 1865000 | Zbl 0992.30009

[43] B. Yan, A Baire's category method for the Dirichlet problem of quasiregular mappings, Trans. Amer. Math. Soc. 355 (2003), 4755-4765. | MR 1997582 | Zbl 1029.30015