
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5)
Vol. VII (2008), 81-96

A priori estimates for weak solutions
of complex Monge-Ampère equations

SLIMANE BENELKOURCHI, VINCENT GUEDJ AND AHMED ZERIAHI

Abstract. Let X be a compact Kähler manifold and ω be a smooth closed form
of bidegree (1, 1) which is nonnegative and big. We study the classes Eχ (X, ω) of
ω-plurisubharmonic functions of finite weighted Monge-Ampère energy. When
the weight χ has fast growth at infinity, the corresponding functions are close to
be bounded.

We show that if a positive Radon measure is suitably dominated by the
Monge-Ampère capacity, then it belongs to the range of the Monge-Ampère op-
erator on some class Eχ (X, ω). This is done by establishing a priori estimates on
the capacity of sublevel sets of the solutions.

Our result extends those of U. Cegrell’s and S. Kolodziej’s and puts them
into a unifying frame. It also gives a simple proof of S. T. Yau’s celebrated a
priori C0-estimate.

Mathematics Subject Classification (2000): 32W20 (primary); 32Q25, 32U05
(secondary).

1. Introduction

Let X be a compact connected Kähler manifold of dimension n ∈ N∗. Throughout
the article ω denotes a smooth closed form of bidegree (1, 1) which is nonnegative
and big, i.e. such that

∫
X ωn > 0. We continue the study started in [10], [8] of the

complex Monge-Ampère equation

(ω + ddcϕ)n = µ, (MA)µ

where ϕ, the unknown function, is ω-plurisubharmonic: this means that ϕ ∈ L1(X)

is upper semi-continuous and ω+ddcϕ≥0 is a positive current. We let P SH(X, ω)

denote the set of all such functions (see [9] for their basic properties). Here µ is
a fixed positive Radon measure of total mass µ(X) = ∫

X ωn , and d = ∂ + ∂ ,
dc = 1

2iπ (∂ − ∂).
Following [10] we say that a ω-plurisubharmonic function ϕ has finite

weighted Monge-Ampère energy, ϕ ∈ E(X, ω), when its Monge-Ampère measure
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(ω+ddcϕ)n is well defined, and there exists an increasing function χ : R− → R−
such that χ(−∞) = −∞ and χ ◦ ϕ ∈ L1((ω + ddcϕ)n). In general χ has very
slow growth at infinity, so that ϕ is far from being bounded.

The purpose of this article is twofold. First we extend one of the main results
of [10] by showing:

Theorem A. There exists ϕ ∈ E(X, ω) such that µ = (ω + ddcϕ)n if and only if µ

does not charge pluripolar sets.

This results has been established in [10] when ω is a Kähler form. It is important for
applications to complex dynamics and Kähler geometry to consider as well forms
ω that are less positive (see [8]).

We then look for conditions on the measure µ which insure that the solution
ϕ is almost bounded. Following the seminal work of S. Kolodziej [12, 13], we say
that µ is dominated by the Monge-Ampère capacity Capω if there exists a function
F : R+ → R+ such that limt→0+ F(t) = 0 and

µ(K ) ≤ F(Capω(K )), for all Borel subsets K ⊂ X. (∗)

Here Capω denotes the global version of the Monge-Ampère capacity introduced
by E. Bedford and A. Taylor [3] (see Section 2).

Observe that µ does not charge pluripolar sets since F(0) = 0. When F(x) �
xα vanishes at order α > 1 and ω is Kähler, S. Kolodziej has proved [12] that the
solution ϕ ∈ P SH(X, ω) of (MA)µ is continuous. The boundedness part of this
result was extended in [8] to the case when ω is merely big and nonnegative. If
F(x) � xα with 0 < α < 1, two of us have proved in [10] that the solution ϕ

has finite χ−energy, where χ(t) = −(−t)p, p = p(α) > 0. This result was first
established by U. Cegrell in a local context [7].

Another objective of this article is to fill in the gap inbetween Cegrell’s and
Kolodziej’s results, by considering all intermediate dominating functions F. Write
Fε(x) = x[ε(− ln(x)/n)]n where ε : R → [0, ∞[ is nonincreasing. Our second
main result is:

Theorem B. If µ(K ) ≤ Fε(Capω(K )) for all Borel subsets K ⊂ X, then µ =
(ω + ddcϕ)n where ϕ ∈ P SH(X, ω) satisfies supX ϕ = 0 and

Capω(ϕ < −s) ≤ exp(−nH−1(s)).

Here H−1 is the reciprocal function of H(x) = e
∫ x

0 ε(t)dt + s0, where s0 =
s0(ε, ω) ≥ 0 only depends on ε and ω.

This general statement has several useful consequences:

• if
∫ +∞

0 ε(t)dt < +∞, then H−1(s) = +∞ for s ≥ s∞ := e
∫ +∞

0 ε(t)dt + s0,

hence Capω(ϕ < −s) = 0. This means that ϕ is bounded from below by −s∞.

This result is due to S. Kolodziej [12,13] when ω is Kähler, and [8] when ω ≥ 0
is merely big;
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• condition (∗) is easy to check for measures with density in L p, p > 1. Our
result thus gives a simple proof (Corollary 3.2), following the seminal approach
of S. Kolodziej ( [12]), of the C0-a priori estimate of S. T. Yau [19], which is
crucial for proving the Calabi conjecture (see [18] for an overview);

• when
∫ +∞

0 ε(t)dt = +∞, the solution ϕ is generally unbounded. The faster
ε(t) decreases towards zero, the faster the growth of H−1 at infinity, hence the
closer is ϕ from being bounded;

• the special case ε ≡ 1 is of particular interest. Here µ(·) ≤ Capω(·), and our
result shows that Capω(ϕ < −s) decreases exponentially fast, hence ϕ has “
loglog-singularities”. These are the type of singularities of the metrics used
in Arakelov geometry in relation with measures µ = f dV whose density has
Poincaré-type singularities (see [5, 15]).

We prove Theorem B in Section 3 , after establishing Theorem A in Subection
2.1 and recalling some useful facts from [8, 10] in Subection 2.2. We then test
the sharpness of our estimates in Section 4, where we give examples of measures
fulfilling our assumptions: these are absolutely continuous with respect to ωn , and
their density do not belong to L p, for any p > 1.

2. Weakly singular quasiplurisubharmonic functions

The class E(X, ω) of ω-psh functions with finite weighted Monge-Ampère energy
has been introduced and studied in [10]. It is the largest subclass of P SH(X, ω)

on which the complex Monge-Ampère operator (ω + ddc·)n is well-defined and
the comparison principle is valid. Recall that ϕ ∈ E(X, ω) if and only if (ω +
ddcϕ j )

n(ϕ ≤ − j) → 0, where ϕ j := max(ϕ, − j).

2.1. The range of the Monge-Ampère operator

The range of the operator (ω + ddc·)n acting on E(X, ω) has been characterized
in [10] when ω is a Kähler form. We extend here this result to the case when ω is
merely nonnegative and big.

Theorem 2.1. Assume ω is a smooth closed nonnegative (1, 1) form on X, and µ

is a positive Radon measure such that µ(X) = ∫
X ωn > 0.

Then there exists ϕ ∈ E(X, ω) such that µ = (ω + ddcϕ)n if and only if µ

does not charge pluripolar sets.

Proof. We can assume without loss of generality that µ and ω are normalized so
that µ(X) = ∫

X ωn = 1. Consider, for A > 0,

CA(ω) := {ν probability measure / ν(K ) ≤ A · Capω(K ), for all K ⊂ X},
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where Capω denotes the Monge-Ampère capacity introduced by E. Bedford and
A. Taylor in [3] (see [9] for this compact setting). Recall that

Capω(K ) := sup

{∫
K
(ω + ddcu)n / u ∈ P SH(X, ω), 0 ≤ u ≤ 1

}
.

We first show that a measure ν ∈ CA(ω) is the Monge-Ampère of a function ψ ∈
E p(X, ω), for any 0 < p < 1, where

E p(X, ω) := {ψ ∈ E(X, ω) / ψ ∈ L p((ω + ddcψ)n)}.
Indeed, fix ν ∈ CA(ω), 0 < p < 1, and ω j := ω + ε j
, where 
 is a Kähler
form on X , and ε j > 0 decreases towards zero. Observe that P SH(X, ω) ⊂
P SH(X, ω j ), hence Capω(.) ≤ Capω j

(.), so that ν ∈ CA(ω j ). It follows from [9,
Proposition 3.6 and 2.7] that there exists C0 > 0 such that for any v ∈ P SH(X, ω j )

normalized by supX v = −1, we have

Capω j
(v < −t) ≤ C0

t
, for all t ≥ 1.

This yields E p(X, ω j ) ⊂ L p(ν): if v ∈ E p(X, ω j ) with supX v = −1, then

∫
X
(−v)pdν = p ·

∫ +∞

0
t p−1ν(v < −t)dt

≤ p A ·
∫ +∞

1
t p−1Capω(v < −t)dt + C p

≤ p AC0

1 − p
+ C p < +∞.

It follows therefore from [10, Theorem 4.2] that there exists ϕ j ∈ E p(X, ω j ) with
supX ϕ j = −1 and (ω j + ddcϕ j )

n = c j · ν, where c j = ∫
X ωn

j ≥ 1 decreases
towards 1 as ε j decreases towards zero. We can assume without loss of generality
that 1 ≤ c j ≤ 2. Observe that the ϕ j ’s have uniformly bounded energies, namely

∫
X
(−ϕ j )

p(ω j + ddcϕ j )
n ≤ 2

∫
X
(−ϕ j )

pdν ≤ 2

[
p AC0

1 − p
+ C p

]
.

Since supX ϕ j = −1, we can assume (after extracting a convergent subsequence)
that ϕ j → ϕ in L1(X), where ϕ ∈ P SH(X, ω), supX ϕ = −1.

Set φ j := (supl≥ j ϕl)
∗. Thus φ j ∈ P SH(X, ω j ), and φ j decreases towards

ϕ. Since φ j ≥ ϕ j , it follows from the “fundamental inequality” ([10, Lemma 2.3])
that ∫

X
(−φ j )

p(ω j + ddcφ j )
n ≤ 2n

∫
X
(−ϕ j )

p(ω j + ddcϕ j )
n ≤ C ′ < +∞.
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Hence it follows from stability properties of the class E p(X, ω) that ϕ ∈ E p(X, ω)

(see [10, Proposition 5.6]). Moreover

(ω j + ddcφ j )
n ≥ inf

l≥ j
(ωl + ddcϕl)

n ≥ ν,

hence (ω+ddcϕ)n = lim(ω j +ddcφ j )
n ≥ ν. Since

∫
X ωn = ν(X) = 1, this yields

ν = (ω + ddcϕ)n as claimed above.
We can now prove the statement of the theorem. One implication is obvious: if

µ = (ω + ddcϕ)n, ϕ ∈ E(X, ω), then µ does not charge pluripolar sets, as follows
from [10, Theorem 1.3].

So we assume now µ that does not charge pluripolar sets. Since C1(ω) is
a compact convex set of probability measures which contains all measures (ω +
ddcu)n , u ∈ P SH(X, ω), 0 ≤ u ≤ 1, we can project µ onto C1(ω) and get, by a
generalization of Radon-Nikodym theorem (see [7, 16]),

µ = f · ν, ν ∈ C1(ω), 0 ≤ f ∈ L1(ν).

Now ν = (ω + ddcψ)n for some ψ ∈ E1/2(X, ω), ψ ≤ 0, as follows from
the discussion above. Replacing ψ by eψ shows that we can actually assume ψ

to be bounded (see [10, Lemma 4.5]). We can now apply line by line the same
proof as that of [10, Theorem 4.6] to conclude that µ = (ω + ddcϕ)n for some
ϕ ∈ E(X, ω).

2.2. High energy and capacity estimates

Given χ : R− → R− an increasing function, we consider, following [10],

Eχ (X, ω) :=
{
ϕ ∈ E(X, ω) /

∫
X
(−χ)(−|ϕ|) (ω + ddcϕ)n < +∞

}
.

Alternatively a function ϕ ≤ 0 belongs to Eχ (X, ω) if and only if

sup
j

∫
X
(−χ) ◦ ϕ j (ω + ddcϕ j )

n < +∞, where ϕ j := max(ϕ, − j)

is the canonical approximation of ϕ by bounded ω-psh functions. When χ(t) =
−(−t)p, Eχ (X, ω) is the class E p(X, ω) used in previous section.

The properties of classes Eχ (X, ω) are quite different whether the weight χ is
convex (slow growth at infinity) or concave. In previous works [10], two of us were
mainly interested in weights χ of moderate growth at infinity (at most polynomial).
Our main objective in the sequel is to construct solutions ϕ of (M A)µ which are
“almost bounded”, i.e. in classes Eχ (X, ω) for concave weights χ of arbitrarily
high growth.
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For this purpose it is useful to relate the property ϕ ∈ Eχ (X, ω) to the speed of
decreasing of Capω(ϕ < −t), as t → +∞. We set

Êχ (X, ω) :=
{
ϕ ∈ P SH(X, ω) /

∫ +∞

0
tnχ ′(−t)Capω(ϕ < −t)dt < +∞

}
.

An important tool in the study of classes Eχ (X, ω) are the “fundamental inequali-
ties” ( [10, Lemmas 2.3 and 3.5]), which allow to compare the weighted energy of
two ω-psh functions ϕ ≤ ψ . These inequalities are only valid for weights of slow
growth (at most polynomial), while they become immediate for classes Êχ (X, ω).

So are the convexity properties of Êχ (X, ω). We summarize this and compare these
classes in the following:

Proposition 2.2. The classes Êχ (X, ω) are convex and stable under maximum: if

Êχ (X, ω) � ϕ ≤ ψ ∈ P SH(X, ω), then ψ ∈ Êχ (X, ω).

One always has Êχ (X, ω) ⊂ Eχ (X, ω), while

Eχ̂ (X, ω) ⊂ Êχ (X, ω), where χ ′(t − 1) = tnχ̂ ′(t).

Since we are mainly interested in the sequel in weights with (super) fast growth at
infinity, the previous proposition shows that Êχ (X, ω) and Eχ (X, ω) are roughly
the same: a function ϕ ∈ P SH(X, ω) belongs to one of these classes if and only if
Capω(ϕ < −t) decreases fast enough, as t → +∞.

Proof. The convexity of Êχ (X, ω) follows from the following simple observation:

if ϕ, ψ ∈ Êχ (X, ω) and 0 ≤ a ≤ 1, then

{aϕ + (1 − a)ψ < −t} ⊂ {ϕ < −t} ∪ {ψ < −t} .

The stability under maximum is obvious.
Assume ϕ ∈ Êχ (X, ω). We can assume without loss of generality ϕ ≤ 0 and

χ(0) = 0. Set ϕ j := max(ϕ, − j). It follows from Lemma 2.3 below that

∫
X
(−χ) ◦ ϕ j (ω + ddcϕ j )

n =
∫ +∞

0
χ ′(−t)(ω + ddcϕ j )

n(ϕ j < −t)dt

≤
∫ +∞

0
χ ′(−t)tnCapω(ϕ < −t)dt < +∞.

This shows that ϕ ∈ Eχ (X, ω). The other inclusion goes similarly, using the second
inequality in Lemma 2.3 below.

If ϕ ∈ Eχ (X, ω) (or Êχ (X, ω)), then the bigger the growth of χ at −∞, the
smaller Capω(ϕ < −t) when t → +∞, hence the closer ϕ is from being bounded.



A PRIORI ESTIMATES FOR SOLUTIONS OF MONGE-AMPÈRE EQUATIONS 87

Indeed ϕ ∈ P SH(X, ω) is bounded iff it belongs to Eχ (X, ω) for all weights χ , as
was observed in [10, Proposition 3.1]. Similarly

P SH(X, ω) ∩ L∞(X) =
⋂
χ

Êχ (X, ω),

where the intersection runs over all concave increasing functions χ .

We will make constant use of the following result:

Lemma 2.3. Fix ϕ ∈ E(X, ω). Then for all s > 0 and 0 ≤ t ≤ 1,

tnCapω(ϕ < −s − t) ≤
∫

(ϕ<−s)
(ω + ddcϕ)n ≤ snCapω(ϕ < −s),

where the second inequality is true only for s ≥ 1.

The proof is a direct consequence of the comparison principle (see [8, Lemma
2.2] and [10]).

3. Measures dominated by capacity

From now on µ denotes a positive Radon measure on X whose total mass is
Volω(X): this is an obvious necessary condition in order to solve (M A)µ. To sim-
plify numerical computations, we assume in the sequel that µ and ω have been
normalized so that

µ(X) = Volω(X) =
∫

X
ωn = 1.

When µ = ehωn is a smooth volume form and ω is a Kähler form, S. T. Yau
has proved [19] that (M A)µ admits a unique smooth solution ϕ ∈ P SH(X, ω)

with supX ϕ = 0. Smooth measures are easily seen to be nicely dominated by the
Monge-Ampère capacity (see the proof of Corollary 3.2 below).

Measures dominated by the Monge-Ampère capacity have been extensively
studied by S.Kolodziej in [12–14]. Following S. Kolodziej ( [13, 14]) with slightly
different notations, fix ε : R → [0, ∞[ a continuous decreasing function and set

Fε(x) := x[ε(− ln x/n)]n, x > 0.

We will consider probability measures µ satisfying the following condition : for all
Borel subsets K ⊂ X ,

µ(K ) ≤ Fε(Capω(K )).

The main result achieved in [12], can be formulated as follows: If ω is a Kähler
form and

∫ +∞
0 ε(t)dt < +∞ then µ = (ω + ddcϕ)n for some continuous function

ϕ ∈ P SH(X, ω).
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The condition
∫ +∞

0 ε(t)dt < +∞ means that ε decreases fast enough towards
zero at infinity. This gives a quantitative estimate on how fast ε(− ln Capω(K )/n),
hence µ(K ), decreases towards zero as Capω(K ) → 0.

When
∫ +∞

0 ε(t)dt = +∞, it follows from Theorem 2.1 that µ = (ω+ddcϕ)n

for some function ϕ ∈ E(X, ω), but ϕ will generally be unbounded. Our second
main result measures how far ϕ is from being bounded:

Theorem 3.1. Assume for all compact subsets K ⊂ X,

µ(K ) ≤ Fε(Capω(K )). (3.1)

Then µ = (ω + ddcϕ)n where ϕ ∈ E(X, ω) is such that supX ϕ = 0 and

Capω(ϕ < −s) ≤ exp(−nH−1(s)), for all s > 0.

Here H−1 is the reciprocal function of H(x) = e
∫ x

0 ε(t)dt + s0, where s0 =
s0(ε, ω) ≥ 0 is a constant which only depends on ε and ω.

In particular ϕ ∈ Eχ (X, ω) where −χ(−t) = exp(nH−1(t)/2).

Recall that here, and troughout the article, ω ≥ 0 is merely big.
Before proving this result we make a few observations.

• It is interesting to consider as well the case when ε(t) increases towards +∞.
One can then obtain solutions ϕ such that Capω(ϕ < −t) decreases at a poly-
nomial rate. When e.g. ω is Kähler and µ(K ) ≤ Capω(K )α , 0 < α < 1, it
follows from [10, Proposition 5.3] that µ = (ω + ddcϕ)n where ϕ ∈ E p(X, ω)

for some p = pα > 0. Here E p(X, ω) denotes the Cegrell type class Eχ (X, ω),

with χ(t) = −(−t)p.

• When ε(t) ≡ 1, Fε(x) = x and H(x) � e.x . Thus Theorem 3.1 reads µ ≤
Capω ⇒ µ = (ω + ddcϕ)n , where

Capω(ϕ < −s) � exp (−ns/e) .

This is precisely the rate of decreasing corresponding to functions which look
locally like − log(− log ||z||), in some local chart z ∈ U ⊂ Cn . This class
of ω-psh functions with “loglog-singularities” is important for applications (see
[5, 15]).

• If ε(t) decreases towards zero, then Capω(ϕ < −t) decreases at a superexpo-
nential rate. The faster ε(t) decreases towards zero, the slower the growth of
H , hence the faster the growth of H−1 at infinity. When

∫ +∞
ε(t)dt < +∞,

the function ε decreases so fast that Capω(ϕ < −t) = 0 for t >> 1, thus ϕ is
bounded. This is the case when µ(K ) ≤ Capω(K )α for some α > 1 [8, 12].

• When
∫ +∞

ε(t)dt = +∞, the solution ϕ may well be unbounded (see examples
in Section 4). At the critical case where µ ≤ Fε(Capω) for all functions ε such
that

∫ +∞
ε(t)dt = +∞, we obtain

µ = (ω + ddcϕ)n with ϕ ∈ P SH(X, ω) ∩ L∞(X),



A PRIORI ESTIMATES FOR SOLUTIONS OF MONGE-AMPÈRE EQUATIONS 89

as follows from [10, Proposition 3.1]. This partially explains the difficulty in
describing the range of Monge-Ampère operators on the set of bounded
(quasi-)psh functions.

Proof. The assumption on µ implies in particular that it vanishes on pluripolar sets.
It follows from Theorem 2.1 that there exists a function ϕ ∈ E(X, ω) such that
µ = (ω + ddcϕ)n and supX ϕ = 0. Set

g(s) := −1

n
log Capω(ϕ < −s), ∀s > 0.

The function g is increasing on [0, +∞] and g(+∞) = +∞, since Capω vanishes
on pluripolar sets. Observe also that g(s) ≥ 0 for all s ≥ 0, since

g(0) = −1

n
log Capω(X) = −1

n
log Volω(X) = 0.

It follows from Lemma 2.3 and (3.1) that for all s > 0 and 0 ≤ t ≤ 1,

tnCapω(ϕ < −s − t) ≤ µ(ϕ < −s) ≤ Fε

(
Capω(ϕ < −s)

)
.

Therefore for all s > 0 and 0 ≤ t ≤ 1,

log t − log ε ◦ g(s) + g(s) ≤ g(s + t). (3.2)

We define an increasing sequence (s j ) j∈N by induction setting

s j+1 = s j + eε ◦ g(s j ), for all j ∈ N.

The choice of s0

Recall that (3.2) is only valid for 0 ≤ t ≤ 1. We choose s0 ≥ 0 large enough so that

eε ◦ g(s0) ≤ 1. (3.3)

This will allow us to use (3.2) with t = t j = s j+1 − s j ∈ [0, 1], since ε ◦ g is
decreasing, while s j ≥ s0 is increasing, hence

0 ≤ t j = eε ◦ g(s j ) ≤ eε ◦ g(s0) ≤ 1.

We must insure that s0 = s0(ε, ω) can be chosen to be independent of ϕ. This is a
consequence of [9, Proposition 2.7]: since supX ϕ = 0, there exists c1(ω) > 0 so
that 0 ≤ ∫

X (−ϕ)ωn ≤ c1(ω), hence

g(s) := −1

n
log Capω(ϕ < −s) ≥ 1

n
log s − 1

n
log(n + c1(ω)).

Therefore g(s0) ≥ ε−1(1/e) for s0 = s0(ε, ω) := (n + c1(ω)) exp(nε−1(1/e)),
which is independent of ϕ. This yields eε ◦ g(s0) ≤ 1, as desired.
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The growth of s j

We can now apply (3.2) and get g(s j ) ≥ j + g(s0) ≥ j. Thus lim g(s j ) = +∞.
There are two cases to be considered.

If s∞ = lim s j ∈ R+, then g(s) ≡ +∞ for s > s∞, i.e. Capω(ϕ < −s) =
0, ∀s > s∞. Therefore ϕ is bounded from below by −s∞, in particular ϕ ∈
Eχ (X, ω) for all χ.

Assume now (second case) that s j → +∞. For each s > 0, there exists
N = Ns ∈ N such that sN ≤ s < sN+1. We can estimate s �→ Ns :

s ≤ sN+1 =
N∑
0

(s j+1 − s j ) + s0 =
N∑

j=0

e ε ◦ g(s j ) + s0

≤ e
N∑
0

ε( j) + s0 ≤ e.ε(0) + e
∫ N

0
ε(t)dt + s0 =: H(N ).

Therefore H−1(s) ≤ N ≤ g(sN ) ≤ g(s), hence

Capω(ϕ < −s) ≤ exp(−nH−1(s)).

Set now −χ(−t) = exp(nH−1(t)/2). Then
∫ +∞

0
tnχ ′(−t)Capω(ϕ < −t)dt

≤ n

2

∫ +∞

0
tn 1

ε(H−1(t)) + s̃0
exp(−nH−1(t)/2)dt

≤ C
∫ +∞

0
tn exp(−nt/2)dt < +∞.

This shows that ϕ ∈ Eχ (X, ω) where χ(t) = − exp(nH−1(−t)/2).
It follows from the proof above that when

∫ +∞
0 ε(t)dt < +∞, the solution ϕ

is bounded since in this case we have

s∞ := lim
j→+∞ s j ≤ s0(ε, ω) + e ε(0) + e

∫ +∞

0
ε(t)dt < +∞

where s0(ε, ω) is an absolute constant satisfying (3.3) (see above).

Let us emphasize that Theorem 3.1 also yields a slightly simplified proof of
the following result [8, 12]: if µ(K ) ≤ Fε(Capω(K )) for some decreasing function
ε : R → R+ such that

∫ +∞
ε(t)dt < +∞, then the sequence (s j ) above is

convergent, hence µ = (ω + ddcϕ)n , where ϕ ∈ P SH(X, ω) is bounded. For
the reader’s convenience we indicate a proof of the following important particular
case:
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Corollary 3.2. Let µ = f ωn be a measure with density 0 ≤ f ∈ L p(ωn), where
p > 1 and

∫
X f ωn = ∫

X ωn. Then there exists a unique bounded function ϕ ∈
P SH(X, ω) such that (ω + ddcϕ)n = µ, supX ϕ = 0 and

0 ≤ ||ϕ||L∞(X) ≤ C(p, ω).|| f ||1/n
L p(ωn),

where C(p, ω) > 0 only depends on p and ω.

This a priori bound is a crucial step in the proof by S. T. Yau of the Calabi
conjecture (see [2, 4, 6, 18, 19]). The proof presented here follows Kolodziej’s new
and decisive pluripotential approach (see [12]). Let us stress that the dependence
ω �−→ C(p, ω) is quite explicit, as we shall see in the proof. This is important
when considering degenerate situations [8].

Proof. We claim that there exists C1(ω) such that

µ(K ) ≤
[
C1(ω)|| f ||1/n

L p(ωn)

]n [
Capω(K )

]2
, for all Borel sets K ⊂ X. (3.4)

Assuming this for the moment, we can apply Theorem 3.1 with

ε(x) = C1(ω)|| f ||1/n
L p(ωn) exp(−x),

which yields, as observed at the end of the proof of Theorem 3.1

||ϕ||L∞(X) ≤ M( f, ω),

where

M( f, ω) := s0(ε, ω) + e ε(0) + e
∫ +∞

0
ε(t)dt = s0(ε, ω) + 2eC1(ω)|| f ||1/n

L p(ωn)

and s0 = s0(ε, ω) is a large number s0 > 1 satisfying the inequality (3.3).
In order to give the precise dependence of the uniform bound M( f, ω) on the

L p−norm of the density f , we need to choose s0 more carefully. Observe that
condition (3.3) can be written

Capω({ϕ ≤ −s0}) ≤ exp(−nε−1(1/e)).

Since nε−1(1/e) = log
(

enC1(ω)n‖ f ‖L p(ωn)

)
, we must choose s0 > 0 so that

Capω({ϕ ≤ −s0}) ≤ 1

enC1(ω)n‖ f ‖L p(ωn)

. (3.5)

We claim that for any N ≥ 1 there exists a uniform constant C2(N , p, ω) > 0 such
that for any s > 0,

Capω({ϕ ≤ −s}) ≤ C2(N , p) s−N ‖ f ‖L p(ωn). (3.6)
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Indeed observe first that by Hölder inequality,
∫

X
(−ϕ)N ωn

ϕ =
∫

X
(−ϕ)N f ωn ≤ ‖ f ‖L p(ωn)‖ϕ‖N

L Nq (ωn)
.

Since ϕ belongs to the compact family {ψ ∈ P SH(X, ω); supX ψ =0} ([10]), there
exists a uniform constant C ′

2(N , p, ω) > 0 such that ‖ϕ‖N
L Nq (ωn)

≤ C ′
2(N , p, ω),

hence ∫
X
(−ϕ)N ωn

ϕ ≤ C ′
2(N , p, ω)‖ f ‖L p(ωn).

Fix u ∈ P SH(X, ω) with −1 ≤ u ≤ 0 and N ≥ 1 to be specified later. If follows
from Tchebysheff and energy inequalities ([10]) that

∫
{ϕ≤−s}

(ω + ddcu)n ≤ s−N
∫

X
(−ϕ)N (ω + ddcu)n

≤ cN s−N max

{∫
X
(−ϕ)N ωn

ϕ,

∫
X
(−u)N ωn

u

}

≤ cN s−N max
{
C ′

2(N , p, ω), 1
} ‖ f ‖L p(ωn).

We have used here the fact that ‖ f ‖L p(ωn) ≥ 1, which follows from the normaliza-
tion : 1 = ∫

X ωn = ∫
X f ωn ≤ ‖ f ‖L p(ωn). This proves the claim.

Set N = 2n, it follows from (3.6) that s0 := C1(ω)nenC2(2n, p, ω)‖ f ‖1/n
L p(ωn)

satisfies the required condition (3.5), which implies the estimate of the theorem.

We now establish the estimate (3.4). Observe first that Hölder’s inequality
yields

µ(K ) ≤ || f ||L p(ωn) [Volω(K )]1/q , where 1/p + 1/q = 1. (3.7)

Thus it suffices to estimate the volume Volω(K ). Recall the definition of the
Alexander-Taylor capacity, Tω(K ) := exp(− supX VK ,ω), where

VK ,ω(x) := sup{ψ(x) / ψ ∈ P SH(X, ω), ψ ≤ 0 on K }.
This capacity is comparable to the Monge-Ampère capacity, as was observed by
H. Alexander and A. Taylor [1] (see [9, Proposition 7.1] for this compact setting):

Tω(K ) ≤ e exp

[
− 1

Capω(K )1/n

]
. (3.8)

It thus remains to show that Volω(K ) is suitably bounded from above by Tω(K ).
This follows from Skoda’s uniform integrability result: set

ν(ω) := sup {ν(ψ, x) / ψ ∈ P SH(X, ω), x ∈ X} ,
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where ν(ψ, x) denotes the Lelong number of ψ at point x . This actually only
depends on the cohomology class {ω} ∈ H1,1(X,R). It is a standard fact that goes
back to H. Skoda (see [20]) that there exists C2(ω) > 0 so that

∫
X

exp

(
− 1

ν(ω)
ψ

)
ωn ≤ C2(ω),

for all functions ψ ∈ P SH(X, ω) normalized by supX ψ = 0. We infer

Volω(K ) ≤
∫

K
exp

(
− 1

ν(ω)
V ∗

K ,ω

)
ωn ≤ C2(ω)[Tω(K )]1/ν(ω). (3.9)

It now follows from (3.7), (3.8), (3.9), that

µ(K ) ≤ || f ||L p [C2(ω)]1/qe1/qν(ω) exp

[
− 1

qν(ω)Capω(K )1/n

]
.

The conclusion follows by observing that exp(−1/x1/n) ≤ Cnx2 for some explicit
constant Cn > 0.

4. Examples

4.1. Measures invariant by rotations

In this section we produce examples of radially invariant functions/measures which
show that our previous results are essentially sharp. The first example is due to
S. Kolodziej [11].

Example 4.1. We work here on the Riemann sphere X = P1(C), with ω = ωF S ,
the Fubini-Study volume form. Consider µ = f ω a measure with density f which
is smooth and positive on X \ {p}, and such that

f (z) � c

|z|2(log |z|)2
, c > 0,

in a local chart near p = 0. A simple computation yields µ = ω + ddcϕ, where
ϕ ∈ P SH(P1, ω) is smooth in P1 \ {p} and ϕ(z) � −c′ log(− log |z|) near p = 0,
c′ > 0, hence

log Capω(ϕ < −t) � −t,

Here a � b means that a/b is bounded away from zero and infinity.
This is to be compared to our estimate log Capω(ϕ < −t) � −t/e (Theorem

3.1 ) which can be applied, as it was shown by S.Kolodziej in [11] that µ � Capω.
Thus Theorem 3.1 is essentially sharp when ε ≡ 1.

We now generalize this example and show that the estimate provided by The-
orem 3.1 is essentially sharp in all cases.
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Example 4.2. Fix ε as in Theorem 3.1. Consider µ = f ω on X = P1(C), where
ω = ωF S is the Fubini-Study volume form, f ≥ 0 is continuous on P1 \ {p}, and

f (z) � ε(log(− log |z|))
|z|2(log |z|)2

in local coordinates near p = 0. Here ε : R → R+ decreases towards 0 at +∞.
We claim that there exists A > 0 such that

µ(K ) ≤ ACapω(K )ε(− log Capω(K )), for all K ⊂ X. (4.1)

This is clear outside a small neighborhood of p = 0 since the measure µ is there
dominated by a smooth volume form. So it suffices to establish this estimate when
K is included in a local chart near p = 0. Consider

K̃ := {r ∈ [0, R] ; K ∩ {|z| = r} �= ∅}.
It is a classical fact (see e.g. [17]) that the logarithmic capacity c(K ) of K can be
estimated from below by the length of K̃ , namely

l(K̃ )

4
≤ c(K̃ ) ≤ c(K ).

Using that ε is decreasing, hence 0 ≤ −ε′, we infer

µ(K ) ≤ 2π

∫ l(K̃ )

0
f (r)rdr

≤ 2π

∫ l(K̃ )

0

ε(log(− log r)) − ε′(log − log r)

r(log r)2
dr

= 2π
ε(log(− log l(K̃ )))

− log l(K̃ )
≤ 2π

ε(log(− log 4c(K )))

− log 4c(K )
.

Recall now that the logarithmic capacity c(K) is equivalent to Alexander-Taylor’s
capacity T�(K ), which in turn is equivalent to the global Alexander-Taylor capacity
Tω(K ) (see [9]): c(K ) � T�(K ) � Tω(K ). The Alexander-Taylor’s comparison
theorem [1] reads

− log 4c(K ) � − log Tω(K ) � 1/Capω(K ),

thus µ(K ) ≤ ACapω(K )ε(− log Capω(K )).
We can therefore apply Theorem 3.1. It guarantees that µ = (ω + ddcϕ),

where ϕ ∈ P SH(P1, ω) satisfies log Capω(ϕ < −s) � −nH−1(s), with H(s) =
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eA
∫ s

0 ε(t)dt + s0. On the other hand a simple computation shows that ϕ is contin-
uous in P1 \ {p} and

ϕ � −H(log(− log |z|)) , near p = 0.

The sublevel set (ϕ < −t) therefore coincides with the ball of radius

exp(− exp(H−1(t))),

hence log Capω(ϕ < −s) � −H−1(s).

4.2. Measures with density

Here we consider the case when µ = f dV is absolutely continuous with respect to
a volume form.

Proposition 4.3. Assume µ = f ωn is a probability measure whose density satisfies
f [log(1 + f )]n ∈ L1(ωn). Then µ � Capω.

More generally if f [log(1 + f )/ε(log(1 + | log f |))]n ∈ L1(ωn) for some
continuous decreasing function ε : R → R+∗ , then for all K ⊂ X,

µ(K ) ≤ Fε(Capω(K )), where Fε(x) = Ax

[
ε

(
− ln x

n

)]n

, A > 0.

Proof. With slightly different notations, the proof is identical to that of Lemma 4.2
in [14] to which we refer the reader.

We now give examples showing that Proposition 4.3 is almost optimal.
Example 4.4. For simplicity we give local examples. The computations to follow
can also be performed in a global compact setting.

Consider ϕ(z) = − log(− log ||z||), where ||z|| = √|z1|2 + . . . + |zn|2 de-
notes the Euclidean norm in Cn . One can check that ϕ is plurisubharmonic in a
neighborhood of the origin in Cn , and that there exists cn > 0 so that

µ := (ddcϕ)n = f dVeucl, where f (z) = cn

||z||2n(− log ||z||)n+1
.

Observe that f [log(1 + f )]n−α ∈ L1, ∀α > 0 but f [log(1 + f )]n �∈ L1.

When n = 1 it was observed by S. Kolodziej [11] that µ(K ) � Capω(K ).

Proposition 4.3 yields here

µ(K ) � Capω(K )(| log Capω(K )| + 1).

For n ≥ 1, it follows from Proposition 4.3 and Theorem 3.1 that

log Capω(ϕ < −s) � −nH−1(s).

On the other hand, one can directly check that log Capω(ϕ < −s) � −nH−1(s).
One can get further examples by considering ϕ(z) = χ ◦ log ||z||, so that

(ddcϕ)n = cn(χ
′ ◦ log ||z||)n−1χ ′′(log ||z||)

||z||2n
dVeucl.
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