A metric approach to a class of doubly nonlinear evolution equations and applications
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 7 (2008) no. 1, p. 97-169

This paper deals with the analysis of a class of doubly nonlinear evolution equations in the framework of a general metric space. We propose for such equations a suitable metric formulation (which in fact extends the notion of Curve of Maximal Slope for gradient flows in metric spaces, see [5]), and prove the existence of solutions for the related Cauchy problem by means of an approximation scheme by time discretization. Then, we apply our results to obtain the existence of solutions to abstract doubly nonlinear equations in reflexive Banach spaces. The metric approach is also exploited to analyze a class of evolution equations in L 1 spaces.

Classification:  35K55,  49Q20,  58E99
@article{ASNSP_2008_5_7_1_97_0,
     author = {Rossi, Riccarda and Mielke, Alexander and Savar\'e, Giuseppe},
     title = {A metric approach to a class of doubly nonlinear evolution equations and applications},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 7},
     number = {1},
     year = {2008},
     pages = {97-169},
     zbl = {1183.35164},
     mrnumber = {2413674},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2008_5_7_1_97_0}
}
Rossi, Riccarda; Mielke, Alexander; Savaré, Giuseppe. A metric approach to a class of doubly nonlinear evolution equations and applications. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 7 (2008) no. 1, pp. 97-169. http://www.numdam.org/item/ASNSP_2008_5_7_1_97_0/

[1] R. A. Adams, “Sobolev Spaces”, Pure and Applied Mathematics, Academic Press, New York-London, 1975. | MR 450957 | Zbl 1098.46001

[2] A. Ambrosetti and G. Prodi, “A Primer of Nonlinear Analysis”, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1993. | MR 1225101 | Zbl 0818.47059

[3] L. Ambrosio, Metric space valued functions of bounded variation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), 439-478. | Numdam | MR 1079985 | Zbl 0724.49027

[4] L. Ambrosio, Minimizing movements, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 19 (1995), 191-246. | MR 1387558 | Zbl 0957.49029

[5] L. Ambrosio, N. Gigli and G. Savaré, “Gradient Flows in Metric Spaces and in the Wasserstein Spaces of Probability Measures”, Lecture notes, ETH, Birkhäuser, 2005. | MR 2129498 | Zbl 1090.35002

[6] T. Arai, On the existence of the solution for φ(u ' (t))+ψ(u(t))f(t), J. Fac. Sci. Univ. Tokyo Sect. IA Math. 26 (1979), 75-96. | MR 539774 | Zbl 0418.35056

[7] M. Aso, M. Frémond and N. Kenmochi, Quasi-variational evolution problems for irreversible phase change, In: “Nonlinear Partial Differential Equations and their Applications”, GAKUTO Internat. Ser. Math. Appl., Gakkōtosho, Tokyo, 2004, 517-535. | MR 2087495 | Zbl 1061.35032

[8] M. Aso, M. Frémond and N. Kenmochi, Phase change problems with temperature-dependent constraints for the volume fraction velocities, Nonlinear Anal. 60 (2005), 1003-1023. | MR 2115030 | Zbl 1058.35085

[9] H. Attouch, “Variational Convergence for Functions and Operators”, Applicable Mathematics Series, Pitman (Advanced Publishing Program) Boston MA, 1984. | MR 773850 | Zbl 0561.49012

[10] E. J. Balder, A general approach to lower semicontinuity and lower closure in optimal control theory, SIAM J. Control Optim. 22 (1984), 570-598. | MR 747970 | Zbl 0549.49005

[11] E. J. Balder, An Extension of Prokhorov's Theorem for Transition Probabilities with Applications to Infinite-Dimensional Lower-Closure Problems, Rend. Circ. Mat. Palermo 34 (1985), 427-447. | MR 848120 | Zbl 0606.60006

[12] J. M. Ball, A version of the fundamental theorem for Young measures, In: “PDEs and Continuum Models of Phase Transitions” (Nice 1988), Lecture Notes in Phys., Vol. 344, Springer, Berlin, 1989, 207-215. | MR 1036070 | Zbl 0991.49500

[13] V. Barbu, Existence theorems for a class of two point boundary problems, J. Differential Equations 17 (1975), 236-257. | MR 380532 | Zbl 0295.35074

[14] C. Castaing and M. Valadier, “Convex Analysis and Measurable Multifunctions”, Springer, Berlin-New York, 1977. | MR 467310 | Zbl 0346.46038

[15] P. Colli and A. Visintin, On a class of doubly nonlinear evolution equations, Comm. Partial Differential Equations 15 (1990), 737-756. | MR 1070845 | Zbl 0707.34053

[16] P. Colli, On some doubly nonlinear evolution equations in Banach spaces, Japan J. Indust. Appl. Math. 9 (1992), 181-203. | MR 1170721 | Zbl 0757.34051

[17] E. De Giorgi, New problems on minimizing movements, In: “Boundary Value Problems for PDE and Applications”, Claudio Baiocchi and Jacques Louis Lions (eds.), Masson, Paris, 1993, 81-98. | MR 1260440 | Zbl 0851.35052

[18] E. De Giorgi, A. Marino and M. Tosques, Problems of evolution in metric spaces and maximal decreasing curve, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 68 (1980), 180-187. | MR 636814 | Zbl 0465.47041

[19] G. Dal Maso, A. Desimone and M. G. Mora, Quasistatic evolution problems for linearly elastic-perfectly plastic materials, Arch. Ration. Mech. Anal. 180 (2006), 237-291. | MR 2210910 | Zbl 1093.74007

[20] G. Dal Maso, A. Desimone, M. G. Mora and M. Morini, A vanishing viscosity approach to quasistatic evolution in plasticity with softening, to appear in Arch. Ration. Mech. Anal. | MR 2424994 | Zbl 1219.35305

[21] G. Dal Maso, G. Francfort and R. Toader, Quasistatic growth in nonlinear elasticity, Arch. Ration. Mech. Anal. 176 (2005), 165-225. | MR 2186036 | Zbl 1064.74150

[22] M. Efendiev and A. Mielke, On the rate-independent limit of systems with dry friction and small viscosity, J. Convex Anal. 13 (2006), 151-167. | MR 2211809 | Zbl 1109.74040

[23] L. C. Evans and R. Gariepy, “Measure Theory and Fine Properties of Functions”, Studies in Advanced Mathematics, CRC Press, Boca Raton FL, 1992. | MR 1158660 | Zbl 0804.28001

[24] G. Francfort and A. Mielke, Existence results for a class of rate-independent material models with nonconvex elastic energies, J. Reine Angew. Math. 595 (2006), 55-91. | MR 2244798 | Zbl 1101.74015

[25] P. Germain, “Cours de Mécanique des Milieux Continus. Tome I: Théorie Générale”, Masson et Cie Éditeurs, Paris, 1973. | MR 368541 | Zbl 0254.73001

[26] M. Giaquinta, “Multiple Integrals in the Calculus of Variations”, Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, 1983. | MR 717034 | Zbl 0516.49003

[27] A. Marino, C. Saccon and M. Tosques, Curves of maximal slope and parabolic variational inequalities on nonconvex constraints, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 16 (1989), 281-330. | Numdam | MR 1041899 | Zbl 0699.49015

[28] A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems, Calc. Var. Partial Differential Equations 22 (2005), 73-99. | MR 2105969 | Zbl 1161.74387

[29] A. Mielke, Finite elastoplasticity Lie groups and geodesics on SL(d), In: “Geometry, Mechanics, and Dynamics”, Springer, New York, 2002, 61-90. | MR 1919826 | Zbl 1146.74309

[30] A. Mielke, Energetic formulation of multiplicative elasto-plasticity using dissipation distances, Contin. Mech. Thermodyn. 15 (2003), 351-382. | MR 1999280 | Zbl 1068.74522

[31] A. Mielke, Evolution of rate-independent inelasticity with microstructure using relaxation and Young measures, In: “IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains” (Stuttgart, 2001), Solid Mech. Appl. 108, Kluwer Acad. Publ., Dordrecht, 2003, 33-44. | MR 1991322 | Zbl 1040.74011

[32] A. Mielke, Existence of minimizers in incremental elasto-plasticity with finite strains, SIAM J. Math. Anal. 36 (2004), 384-404. | MR 2111782 | Zbl 1076.74012

[33] A. Mielke, Evolution of rate-independent systems, In: “Evolutionary Equations”, Vol. II, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2005, 461-559. | MR 2182832 | Zbl 1120.47062

[34] A. Mielke and M. Ortiz, A class of minimum principles for characterizing the trajectories and the relaxation of dissipative systems, to appear in ESAIM Control Optim. Calc. Var., published online: 21 December 2007, DOI: 10.1051/cocv: 2007064. | Numdam | MR 2434063 | Zbl pre05309728

[35] A. Mielke and R. Rossi, Existence and uniqueness results for a class of rate-independent hysteresis problems, Math. Models Methods Appl. Sci. 17 (2007), 81-123. | MR 2290410 | Zbl 1121.34052

[36] A. Mielke, R. Rossi and G. Savaré, Modeling solutions with jumps for rate-independent systems on metric spaces, in preparation. | Zbl 1170.49036

[37] A. Mielke, R. Rossi and G. Savaré, On the vanishing viscosity limit for the metric approach to rate-independent problems, in preparation.

[38] A. Mielke and T. Roubiček, A rate-independent model for inelastic behavior of shape-memory alloys, Multiscale Model. Simul. 1 (2003), 571-597. | MR 2029592 | Zbl 1183.74207

[39] A. Mielke and T. Roubiček, Rate-independent damage processes in nonlinear elasticity, Math. Models Methods Appl. Sci. 16 (2006), 177-209. | MR 2210087 | Zbl 1094.35068

[40] A. Mielke and F. Theil, A mathematical model for rate-independent phase transformations with hysteresis, In: Proceedings of the Workshop on “Models of Continuum Mechanics in Analysis and Engineering”, H.-D. Alber, R. Balean and R. Farwig (eds.), Shaker-Verlag, Aachen, 1999, 117-129.

[41] A. Mielke, F. Theil and V. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle, Arch. Ration. Mech. Anal. 162 (2002), 137-177. | MR 1897379 | Zbl 1012.74054

[42] A. Mielke and F. Theil, On rate-independent hysteresis models, NoDEA Nonlinear Differential Equations Appl. 11 (2004), 151-189. | MR 2210284 | Zbl 1061.35182

[43] J. J. Moreau, Sur l'évolution d'un système élasto-visto-plastique, C. R. Acad. Sci. Paris Sér. A-B 273 (1971), A118-A121. | MR 284066 | Zbl 0245.73029

[44] L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 13 (1959), 115-162. | Numdam | MR 109940 | Zbl 0088.07601

[45] R. Rossi and G. Savaré, Gradient flows of non convex functionals in Hilbert spaces and applications, ESAIM Control Optim. Calc. Var. 12 (2006), 564-614. | Numdam | MR 2224826 | Zbl 1116.34048

[46] G. Schimperna, A. Segatti and U. Stefanelli, Well-posedness and long-time behavior for a class of doubly nonlinear equations, Discrete Contin. Dyn. Syst. 18 (2007), 15-38. | MR 2276484 | Zbl 1195.35185

[47] A. Segatti, Global attractor for a class of doubly nonlinear abstract evolution equations, Discrete Contin. Dyn. Syst. 14 (2006), 801-820. | MR 2177098 | Zbl 1092.37052

[48] T. Senba, On some nonlinear evolution equations, Funkcial. Ekva. 29 (1986), 243-257. | MR 904541 | Zbl 0627.35045

[49] U. Stefanelli, The Brézis-Ekeland principle for doubly nonlinear equations, to appear in SIAM J. Control Optim. | MR 2425653 | Zbl 1194.35214

[50] M. Valadier, A course on Young measures, Workshop on Measure Theory and Real Analysis (Italian) (Grado, 1993), Rend. Istit. Mat. Univ. Trieste 26 (1994), suppl. (1995), 349-394. | MR 1408956 | Zbl 0880.49013

[51] A. Visintin, A new approach to evolution, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), 233-238. | MR 1817368 | Zbl 0977.35142