We apply functional analytical and variational methods in order to study well-posedness and qualitative properties of evolution equations on product Hilbert spaces. To this aim we introduce an algebraic formalism for matrices of sesquilinear mappings. We apply our results to parabolic problems of different nature: a coupled diffusive system arising in neurobiology, a strongly damped wave equation, and a heat equation with dynamic boundary conditions.
@article{ASNSP_2008_5_7_2_287_0, author = {Cardanobile, Stefano and Mugnolo, Delio}, title = {Qualitative properties of coupled parabolic systems of evolution equations}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {287--312}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 7}, number = {2}, year = {2008}, mrnumber = {2437029}, zbl = {1179.35181}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2008_5_7_2_287_0/} }
TY - JOUR AU - Cardanobile, Stefano AU - Mugnolo, Delio TI - Qualitative properties of coupled parabolic systems of evolution equations JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2008 SP - 287 EP - 312 VL - 7 IS - 2 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2008_5_7_2_287_0/ LA - en ID - ASNSP_2008_5_7_2_287_0 ER -
%0 Journal Article %A Cardanobile, Stefano %A Mugnolo, Delio %T Qualitative properties of coupled parabolic systems of evolution equations %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2008 %P 287-312 %V 7 %N 2 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2008_5_7_2_287_0/ %G en %F ASNSP_2008_5_7_2_287_0
Cardanobile, Stefano; Mugnolo, Delio. Qualitative properties of coupled parabolic systems of evolution equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 7 (2008) no. 2, pp. 287-312. http://archive.numdam.org/item/ASNSP_2008_5_7_2_287_0/
[1] Nonlinear interaction problems, Nonlinear Anal. 20 (1993), 27-61. | MR | Zbl
and ,[2] Existence and regularity for semilinear parabolic evolution equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 11 (1984), 593-676. | Numdam | MR | Zbl
,[3] Semigroups and evolution equations: functional calculus, regularity and kernel estimates, In: “Handbook of Differential Equations: Evolutionary Equations”, Vol. 1, C. M. Dafermos and E. Feireisl (eds.), North Holland, Amsterdam, 2004. | MR | Zbl
,[4] “Vector-valued Laplace Transforms and Cauchy Problems", Monographs in Mathematics n. 96, Birkhäuser, Basel, 2001. | MR | Zbl
, , and ,[5] Ephaptic coupling of myelinated nerve fibres, Phys. D 148 (2001), 159-174. | MR | Zbl
, and ,[6] Ephaptic interactions in the mammalian olfactory system, J. Neurosci. 21 (2001), 21:RC173, 1-5.
, , , and ,[7] A semigroup approach to boundary feedback systems, Integral Equations Operator Theory 47 (2003), 289-306. | MR | Zbl
, , and ,[8] Analysis of a FitzHugh-Nagumo-Rall model of a neuronal network, Math. Methods Appl. Sci. 30 (2007), 2281-2308. | MR | Zbl
and ,[9] Well-posedness and symmetries of strongly coupled network equations. J. Phys. A 41 (2008). | MR | Zbl
, and ,[10] “Heat Kernels and Spectral Theory", Cambridge Tracts in Mathematics, n. 92, Cambridge University Press, Cambridge, 1990. | MR | Zbl
,[11] “Operator Matrices and Systems of Evolution Equations", Book manuscript. | Zbl
,[12] “The Functional Calculus for Sectorial Operators”, Oper. Theory Adv. Appl., Vol. 169, Birkhäuser, Basel, 2006. | MR | Zbl
,[13] Electrical interaction via the extracellular potential near cell bodies, J. Comput. Neurosci. 2 (1999), 169-184. | Zbl
and ,[14] Matrix methods for wave equations, Math. Z. 253 (2006), 667-680. | MR | Zbl
,[15] Gaussian estimates for a heat equation on a network, Netw. Heter. Media 2 (2007), 55-79. | MR | Zbl
,[16] A variational approach to strongly damped wave equations, In: “Functional Analysis and Evolution Equations: Dedicated to Gunter Lumer", H. Amann et al. (eds.), Birkhäuser, Basel, 2007, 503-514. | MR | Zbl
,[17] Towards a “matrix theory” for unbounded operator matrices, Math. Z. 201 (1989), 57-68. | MR | Zbl
,[18] -contraction semigroups for vector-valued functions, Positivity 3 (1999), 83-93. | MR | Zbl
,[19] “Analysis of Heat Equations on Domains", LMS Monograph Series, n. 30, Princeton University Press, Princeton, 2004. | MR | Zbl
,