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Hypersurfaces with free boundary and large constant mean
curvature: concentration along submanifolds
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Abstract. Given a domain � of Rm+1 and a k-dimensional non-degenerate
minimal submanifold K of ∂� with 1 ≤ k ≤ m − 1, we prove the existence
of a family of embedded constant mean curvature hypersurfaces in � which as
their mean curvature tends to infinity concentrate along K and intersecting ∂�
perpendicularly along their boundaries.
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1. Introduction

Let � be an open bounded subset of Rm+1, m ≥ 2, with smooth boundary ∂�.
Recall that the partitioning problem in � consists on finding, for a given 0 < v <

meas (�), a critical point of the perimeter functional P( · , � ) in the class of sets
in � that enclose a volume v. Here P( E , � ) denotes the perimeter of E relative
to �.

It is clear that whenever such a surface exits it will meet ∂� orthogonally and
will have a constant mean curvature, see Paragraph 2.3.1. In the light of standard
results in geometric measure theory, minimizers do exist for any given volume and
may have various topologies (see the survey by A. Ros [17]). Actually, up to now
the complete description of minimizers has been achieved only in some special
cases; one can see for example [1, 16, 19] and [21]. However, the study of exis-
tence, geometric and topological properties of stationary surfaces (not necessarily
minimizers) is far from being complete. Let us mention that Grüter-Jost [4] have
proved the existence of minimal discs into convex bodies, while Jost in [6] proved
the existence of embedded minimal surfaces of higher genus. In the particular case
of the free boundary Plateau problem, some rather global existence results were ob-
tained by M. Struwe in [22,23] and [24]. In [2], the first author proved the existence
of surfaces similar to half spheres surrounding a small volume near non-degenerate
critical points of the mean curvature of ∂�. Here we are interested in the exis-
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tence of families of stationary sets Eε for the perimeter functional relative to �

having small volume meas Eε proportional to ε. Our result generalizes to higher
dimensional sets the one obtained by the first author in [2]. Before stating it some
preliminaries are needed. We denote by V the interior normal vector field along
∂�. For a given smooth set E ⊂ � with finite perimeter, let � := ∂ E ∩ � satisfy
∂� ⊂ ∂� and denote by N its exterior normal vector field. For a smooth vector
field ζ in Rm , the flow of diffeomorphism {Ft }t∈(0,t∗) of ζ in � induces a variation
{Et = Ft (E)}t of E . Set A(t) = P(Et , �), V (t) = meas(Et ) and

ζ(p) = d

dt
Ft (p) |t=0 .

It is well known that by the first variation of the perimeter and volume functionals,
one has

A′(0) = −
∫

�

m H� 〈ζ, N 〉 d A +
∮

∂�

〈ζ, N̄ 〉 ds; (1.1)

V ′(0) =
∫

�

〈ζ, N 〉 d A, (1.2)

where H� is the mean curvature of �, N its exterior normal vector field and N̄
the exterior normal to ∂� in �. A variation is called normal if ζ = ω N for
a smooth function ω, admissible if both Ft (int�) ⊂ � and Ft (∂�) ⊂ ∂� and
volume-preserving if V (t) = V (0) for every t . Since for any smooth ω satisfying∫
�

ω d A = 0 there exits a volume-preserving admissible normal variation of E
with ζ = ω N , then E is stationary for the perimeter functional (A′(0) = 0) for any
volume-preserving admissible normal variation of E , if and only if

m H� ≡ const. in � and N (σ ) ⊥ Tσ ∂� for every σ ∈ ∂�.

Up to a change of variable, we can reformulate our question to the following free
boundary problem: for a given real number H , find a hypersurface � ⊂ �ε satis-
fying the following conditions

H� ≡ H in �,

∂� ⊂ ∂�ε,

〈N ,Vε〉 = 0 on ∂�,

(1.3)

where �ε := ε−1 � and Vε the interior normal vector field on ∂�ε.
If K is a k-dimensional smooth submanifold of ∂�, we let n := m − k and

define Kε := ε−1 K . Consider the “half”-geodesic tube contained in �ε around Kε

of radius 1
S̄ε(Kε) := {q ∈ �̄ε : d(q, Kε) = 1},

with

d(q, Kε) :=
√

|dist∂�ε (q̃, Kε)|2 + |q − q̃|2
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where q̃ is the projection of q on ∂�ε and

dist∂�ε (q̃,Kε)

= inf
{

length(γ ) : γ ∈C1([0, 1]) is a geodesic in ∂�ε; γ (0)∈ Kε; γ (1)= q̃
}

.

By the smoothness of ∂� and K , the tube is a smooth, possibly immersed, hy-
persurface provided ε is sufficiently small. This tube by construction meets ∂�ε

perpendicularly. Furthermore the mean curvature of this tube satisfies (see also
Paragraph 3.0.5)

m H(S̄ε(Kε)) = n + O(ε) (1.4)

as ε tends to zero and hence it is plausible under some rather mild assumptions on
K that we might be able to perturb this tube to satisfy (1.3) with m H ≡ n. It turns
out that this is not known to be possible for every (small) ε > 0 but we prove the
following theorem :

Theorem 1.1. Let � be a smooth bounded domain of Rm+1, m ≥ 2. Suppose that
K is a non-degenerate minimal submanifold of ∂�. Then, there exist a sequence of
intervals Ii = (ε−

i , ε+
i ), with ε−

i < ε+
i and limi→+∞ ε+

i = 0 such that, for all ε ∈
I := ∪i Ii the “half” geodesic tube ε S̄ε(Kε) may be perturbed to a hypersurface
εSε satisfying (1.3) with mean curvature HεSε ≡ n

m ε−1. Namely there exists a
family of embedded constant mean curvature hypersurfaces in � with boundary on
∂� and intersecting it perpendicularly.

Remark 1.2.

• We emphasize that our argument provides also a stationary area separating of
Rm+1 \ �̄ when considering the lower hemisphere parameterized by the stereo-
graphic projection from the north pole over the unit ball, see Section 3.

• Notice that the surfaces we obtained might have interesting topology. In fact as
far as ε tends to zero, our solutions concentrate along K hence inherit its topo-
logical structure. Furthermore we notice that some existence result of various
minimal immersions were obtained in [9] and [20].
We believe that the minimality condition on K should also be necessary to ob-
tain a result in spirit of Theorem 1.1, see the last paragraph of [15]. The non-
degeneracy condition might fail in some interesting situations, for example when
a symmetry is present. In this case however, one can take advantage of it work-
ing in a subclass of invariant functions: this might also guarantee existence for
all small ε, see [15, Section 5].

• The hypersurface Sε is a small perturbation of S̄ε(Kε) in the sense that it is the
normal graph (for some function whose L∞ norm is bounded by a constant times
ε) over a small translate of Kε in ∂�ε (by some translation whose L∞ norm is
bounded by a constant), we refer to Section 4 for the precise formulation of the
construction of Sε.



410 MOUHAMED MOUSTAPHA FALL AND FETHI MAHMOUDI

• This result also remains true for the existence of capillary hypersurfaces in �

namely those with stationary area which intersect ∂� in a constant angle γ ∈
(0, π) along there boundaries. For more precise comments see Remark 6.3.

To prove the latter theorem, following [10, 15] and [25], we parameterize all sur-
faces nearby S̄ε(Kε) having boundaries in ∂�ε by two parametric functions 
 :
K → Rn and w : Sn+ × ε−1K → R. Here

Sn+ :=
{

x = (x1, · · · , xn+1) ∈ Rn+1 : |x | = 1 and xn+1 > 0
}

.

This yields a perturbed tube Sε(w, 
). A standard computations show that the mean
curvature H(w, 
) of Sε(w, 
) is constant, with the right boundary conditions, is
equivalent to solve a system of nonlinear partial differential equations where the
principal part is the Jacobi operator about a hypersurface close to S̄ε(Kε). The
solvability is based on the invertibility of this linear operator depending on ε (small
parameter). As we will see later, it turns out that this is possible only for some
values of ε tending to zero. Once we have the invertibility our problem becomes
readily a fixed point problem that we can solve provided our approximate solution is
accurate enough. Our method here is similar in spirit to the one in [10]. It goes back
to Malchiodi-Montenegro in [13] (see also [11, 12] and [14], for related issues).

To begin the procedure, we construct first an approximate solution in the fol-
lowing way: let (y1, y2 . . . , yk) ∈ Rk (respectively (z1, z2 . . . , zn) ∈ Bn

1 ) be the
local coordinate variables on Kε (respectively on Sn+). Letting 
 : K → Rn and
w : Bn

1 × Kε → R, consider

S0 : (y, z) �→ y × ε−1
(εy) + (1 + w(y, z)) �(z).

The surfaces nearby S̄ε(Kε) are parameterized (locally) by

G(y, z) : (y, z) −→ S0(y, z) −→ Fε(S0(y, z))

where Fε : Rk × Rn+1 → �̄ is defined in (2.6) is “an almost isometry” which
parameterize a neighborhood of Kε in �ε, Bn

1 is the unit ball centered at the origin
and � = (

�1, . . . , �n, �n+1
)

is the inverse of the stereographic projection from
the south pole. Call the image of this map Sε(w, 
), so in particular

Sε(0, 0) = S̄ε(Kε).

Notice that since �n+1|
∂ Bn

1
= 0, it follows that all these surfaces close to Sε(Kε)

parameterized in this way have boundaries on ∂�ε.
One of the main features of this work is that we compute the mean curvature

of Sε(w, 
), in Paragraph 3.0.5, which can be done following [10] but in contrast
with that paper, we have to gather some new linear and quadratic terms involving 


which will be relevant for the solvability. The linearized mean curvature operator
about S̄ε(Kε) splits into some linear operators on w and 
, given by

−Lε w − ε 〈J
, �̃〉 + εL1w + εJ 1(
) + ε2 L(w, 
), (1.5)
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where J is the Jacobi operator about K in the supporting surface ∂�, see Subsec-
tion 2.2;

Lε := ε2 �K + �Sn+ + n;
J 1
 := −(3n + 1) �n+1h(�̃)a〈
ā, �̃〉 + �n+1h(
ā)a + 2�n+1h : (
)

and L1, L(w, 
) are second order differential operators, see Subsection 2.5, here
h (respectively ) is the second fundamental form of ∂� (respectively K ) and h :
 = habab, where summation over repeated indices is understood. The quadratic
part of the mean curvature is given by

n

2
(εwā + 〈
ā, �̃〉)2 − ε〈
ā, ∇Sn wā〉 − 2ε2∇2

K w : (
)

+ n + 2

6
〈R(
, �̃)
 , �̃〉 − 1

3
〈R(
, Ei )
 , Ei 〉 + Q(w) + ε Q(w, 
),

(1.6)

where �̃ = (
�1, . . . , �n, 0

)
. Finally the boundary condition reads

〈N ,Vε〉 = (−1 + w)
∂w

∂η
+ Ō(ε2) + ε2 L̄(w, 
) + ε Q̄(w, 
) on ∂Sn+ × K ,

where η = −En+1 is the normal vector field of ∂Sn+ in Sn+.
As we will explain later, the Jacobi operator about S̄ε(Kε) (very closed to the

operator (1.5)) has inverse norm which blows-up at rate 1
εR for some R > 0 and

then one do not hope to apply a fixed point argument at this state.
However, we can adjust the tube S̄ε(Kε) as accurate as possible, to a tube

Sε(ŵ
(r), 
̂(r)) satisfying (1.7) below. For that, letting r ≥ 1 be an integer and

setting

ŵ(r) =
r∑

d=1

εdw(d) and 
̂(r) =
r−1∑
d=1

εd
(d),

we have solved

m H(ŵ(r), 
̂(r)) = n + O(εr+1) in Sε(ŵ
(r), 
̂(r)),

〈N ,Vε〉 = Ō(εr+2) on ∂Sε(ŵ
(r), 
̂(r)).

(1.7)

This leads to an iterative scheme, see Section 4. The term of order O(ε) appear-
ing in the expansion of the mean curvature (Paragraph 3.0.5) depends linearly on
the tangential curvature of K which is in the kernel of �Sn+ + n (spanned by �i

with i = 1, . . . , n) and normal curvature K which is perpendicular to this kernel.
Consequently by Fredholm theorem, we can kill these terms by w(1) provided K is
minimal.

Now to annihilate the higher order terms with suitable couples (w(d), 
(d−1)),
d ≥ 2, if we project on the kernel of �Sn+ + n, there appears only J (the Jacobi
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operator about K ) acting on 
(d−1) because when we project, the term J 1
(d−1)

disappear by oddness. Moreover neither the nonlinear terms appearing in the ex-
pansion of H(w, 
) nor the perpendicularity condition will influence the iteration
as well. Therefore the non-degeneracy of K is sufficient for this procedure at each
step of the iterative scheme. In this way for any integer r ≥ 1 we will be able to
have (1.7) yielding good approximate solutions. We notice that it is more conve-
nient to use the operator �Sn+ + n + 〈J, �̃〉 to accomplish this task because it is

invertible in L2(Sn+ × K ). Unfortunately one cannot use it for full solvability of the
problem because w may not gain regularity. We refer to Section 4 for more details.

The final step (see Section 5) is more delicate and consists of the invertibility
of the Jacobi operator about Sε(ŵ

(r), 
̂(r)) which we call Lε,r . Let us mention
that at this level all terms in the expansion depend on r except the model operator
−Lε w−ε 〈J
, �̃〉. At first glance one sees that the operator Lε,r is not so close to
the model one in the usual Sobolev norms because of the competition between the
operators 〈J
, �̃〉 and L1

r . This is due to fact that if one consider a tube of radius
ε in a manifold M with boundary sitting on ∂M, the mean curvature expansion
makes appear terms of order ε depending on the second fundamental form of ∂M.
On the contrary, dealing with manifolds without boundary, as in [10], it turns out
that in this case the first error terms are of order ε2 and thus also in the expansion
of the mean curvature of there perturbed tube, there cannot appear terms like εL ,
see [10, Proposition 4.1]. Having bigger error terms than those in [10], we need
more accurate approximate solutions and different spaces for the spectral analysis.
Since our operator Lε,r acts on the couple (w, 
) almost separately, to tackle this
it is natural to adjust the norms used for w and 
. For any v ∈ L2(Sn+ × K ) we
decompose it as v = ε1−2s w + 〈
, �̃〉 where 
i , i = 1, . . . , n are the components
of the projection of v onto the Kernel of �Sn+ + n for some s ∈ (0, 1/2). With this

decomposition, in a suitable weighted Hilbert subspace of L2(Sn+ × K ) we can see
Lε,r as a perturbation of the model one, see Proposition 5.1.

As mentioned above the existence of families of constant mean curvature sur-
faces holds only for a suitable sequence of intervals with length decreasing to zero
and not the whole ε is related to a resonance phenomenon peculiar to concentration
on positive dimensional sets and it appears in the study of several class of (geomet-
ric) non-linear PDE’s. Concentration along sets of dimension k = 1, . . . , n − 1
has been proved here, and analogous spectral properties hold true. By the Weyl’s
asymptotic formula, if solutions concentrate along a set of dimension d the average
distance between those close to zero is of order εd . The resonance phenomenon
was taken care of using a theorem by T. Kato, see [7, page 445], which allows
to differentiate eigenvalues with respect to ε. In the aforementioned papers it was
shown that, when varying the parameter ε, the spectral gaps near zero almost do
not shrink, and invertibility can be obtained for a large family of epsilon’s. The
case of one dimensional limit sets can be handled using a more direct method based
on a Lyapunov-Schmidt reduction, indeed in this case the distance between two
consecutive small eigenvalues, candidates to be resonant, is sufficiently large and
working away from resonant modes one can perform a contraction mapping ar-
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gument quite easily. Here instead the average distance between two consecutive
eigenvalues becomes denser and denser, to overcome this problem one needs to ap-
ply Kato’s Theorem constructing first good approximate eigenfunctions, we refer to
Section 5. And finally following [10], one can estimate the size of the spectral gaps,
which determine the size of the norm of the inverse of Lε,r . For suitable values of
ε the norm of the inverse of Lε,r is of order O( 1

εR ) with a fixed R > 0 independent
of r . Now as far as r can be chosen arbitrary large, our fixed point problem can be
merely solved. This program is carried out in the last section.
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alization to capillary problems. They are supported by M.U.R.S.T within the PRIN
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2. Preliminaries

Let K be a k-dimensional submanifold of (∂�, g) (1 ≤ k ≤ m−1) and set n = m−
k. We choose along K a local orthonormal frame field ((Ea)a=1,···k, (Ei )i=1,··· ,n)
which is oriented and call V the interior normal field along ∂� and V|K = En+1.
At points of K , Rm+1 splits naturally as T ∂� ⊕ REn+1 with T ∂� = T K ⊕ N K ,
where T K is the tangent space to K and N K := N K ∂� represents the normal
bundle in ∂�, which are spanned respectively by (Ea)a and (E j ) j .

2.1. Fermi coordinates on ∂� near K

Denote by ∇ the connection induced by the metric g and by ∇⊥ the corresponding
normal connection on the normal bundle. Given q ∈ K , we use some geodesic
coordinates y centered at q.

f : y −→ expK
q (ya Ea). (2.1)

This yields the coordinate vector fields Xa := f∗(∂ȳa ). We also assume that at q
the normal vectors (Ei )i , i = 1, . . . , n, are transported parallely (with respect to
∇⊥) through geodesics from q, so in particular

g
(∇Ea E j , Ei

) = 0 at q, i, j = 1, . . . , n, a = 1, . . . , k. (2.2)

In a neighborhood of q, we choose Fermi coordinates (y, ζ ) on ∂� defined by

F : (y, ζ ) −→ exp∂�
f (y)

(
n∑

i=1

ζ i Ei

)
; (y, ζ ) =

(
(ya)a, (ζ i )i

)
. (2.3)
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Hence we have the coordinate vector fields

Xi := F̄∗(∂ζ i ) and Xa := F̄∗(∂ȳa ).

By our choice of coordinates, on K the metric gα,β := 〈Xα, Xβ〉 splits in the
following way

g(q) = gab(q) d ya ⊗ d yb + gi j (q) dζ i ⊗ dζ j ; q ∈ K . (2.4)

We denote by b
a(·) the 1-forms defined on the normal bundle of K by

b
a(Ei ) = g(∇Ea Eb, Ei ). (2.5)

The submanifold K is said to be minimal if the trace a
a (·) = 0.

We will also denote by Rαβγ δ the components of the curvature tensor with
lowered indices, which are obtained by means of the usual ones Rσ

βγ δ by

Rαβγ δ = gασ Rσ
βγ δ.

When we consider the metric coefficients in a neighborhood of K , we obtain a de-
viation from formula (2.4), which is expressed by the next lemma, see [10, Propo-
sition 2.1] for the proof. Denote by r the distance function from K .

Lemma 2.1. In the above coordinates (y, ζ ), for any a = 1, ..., k and any i, j =
1, ..., n, we have

gi j (0, ζ ) = δi j + 1
3 Rist j ζ s ζ t + O(r3);

gaj (0, ζ ) = O(r2);
gab(0, ζ ) = δab − 2 b

a(Ei ) ζ i + [
Rsabl + c

a(Es) b
c (El)

]
ζ sζ l + O(r3).

Here Rist j are computed at the point q of K parameterized by (0, 0).

The boundary of the scaled domain ∂�ε := 1
ε
∂� is parameterized, in a neigh-

borhood of ε−1q ∈ Kε := ε−1K by

F̄ε(y, x ′) := 1

ε
F̄(εy, εx ′) with x ′ := (xi , · · · , xn).

Hence we have the induced coordinate vector fields

Xi := F̄ε∗ (∂xi ) and Xa := F̄ε∗ (∂ya ).

By construction, Xα |ε−1q = Eα and Vε(ε−1q) = En+1. From Lemma 2.1 it is
evident that the metric g on (∂�ε, g) has the expansion given by the
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Lemma 2.2. In a neighborhood of Kε the following hold

gi j (0, x) = δi j + ε
3 Rist j xs xt + O(ε2r3);

gaj (0, x) = O(εr2);
gab(0, x) = δab − 2 b

a(Ei ) xi + ε
[
Rsabl + c

a(Es) b
c (El)

]
xs xl + O(ε2r3).

We can now parameterize tubular neighborhood of Kε in �ε,

Fε(y, x ′, xn+1) = 1

ε
F̄(εy, εx ′) + xn+1Vε(y, x ′), (2.6)

where Vε(y, x ′) := V( 1
ε

F̄(εy, εx ′)). We denote by h the second fundamental form
of ∂� so that:

〈dVε(p)[Xα], Xβ〉 = ε hα,β(q) (2.7)

when q = F̄ε(p).

2.2. The Jacobi operator about K

The linearized mean curvature operator about K is given by

J := �⊥ − R⊥ + B (2.8)

where the normal Laplacian �⊥ is defined as

�⊥ := ∇⊥
Ea

∇⊥
Ea

− ∇⊥
∇T

Ea
Ea

,

with ∇⊥ denoting the connection on the normal bundle of K in ∂� while B is a
symmetric operator defined by

ḡ(B(X), Y ) = b
a(X) a

b (Y ) for all X, Y ∈ N K ,

where  is defined in (2.5) and R⊥ : Np K −→ Np K is given by

R⊥ := (R(Ea, ·) Ea)⊥ ,

where (·)⊥ denotes the orthogonal projection on N K . The Ricci tensor is defined
by

Ric(X, Y ) = −ḡ(R(X, Eγ ) Y, Eγ ) for all X, Y ∈ Tp M.

Finally, we recall that the submanifold K is said to be non-degenerate if the Jacobi
operator J is invertible, or equivalently if the equation J
 = 0 has only the trivial
solution among the sections in N K .
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2.3. First and second variation of area for capillary hypersurfaces

Let � be a smooth hypersurface in an (m + 1)-dimensional Riemannian manifold
(M, g) with smooth, nonempty boundary ∂ M . Suppose that ∂� ⊂ ∂ M so that M
is separated into two parts, call � the boundary of one of these parts in ∂ M .

2.3.1. First variation of area

Let Ft be a variation of � with variation vector field

ζ(p) = ∂ Ft

∂t
(p)|t=0 for every p ∈ �.

A variation is called admissible if both Ft (int�) ⊂ M and Ft (∂�) ⊂ ∂ M . Let N
be a unit outer normal vector along �; H� its mean curvature and υ (respectively
ῡ) be the unit exterior normal vector along ∂� in � (respectively in �).

An admissible variation induces hypersurfaces �t and �t . Let A(t) (respec-
tively T (t)) be the volume of �t (respectively �t ) and V (t) the signed volume
bounded by � and �t . For a given angle γ ∈ (0, π), we consider the total energy

E(t) := A(t) − cos(γ ) T (t). (2.9)

It is well known (see for example [18]) that

E ′(0) = −
∫

�

nH�〈ζ, N 〉gd A +
∮

∂�

〈ζ, υ − cos(γ ) ῡ〉gds (2.10)

and

V ′(0) =
∫

�

〈ζ, N 〉gd A. (2.11)

A variation is called volume-preserving if V (t) = V (0) for every t . � is called
capillary hypersurface if � is stationary for the total energy (E ′(0) = 0) for any
volume-preserving admissible variation. Consequently if � is capillary, it has a
constant mean curvature and intersect ∂ M with the angle γ in the sense that the
angle between the normals of υ and ῡ is γ or equivalently the angle between N and
V is γ , where V is the unit outer normal field along ∂ M .

Physically, in the tree-phase system the quantity cos(γ ) T (0) is interpreted as
the wetting energy and γ the contact angle while cos(γ ) is the relative adhesion
coefficient between the fluid bounded by � and � and the walls ∂ M . Here we
are interested in a configuration in the absence of gravity. A more general setting
including the gravitational energy and works on capillary surfaces can be found in
the book by R. Finn [3].

2.3.2. The Jacobi operator about �

We denote by �� and �∂ M the second fundamental forms of � and ∂ M respec-
tively. Assume that � is a capillary hypersurface. Recall that the Jacobi operator
(the linearized mean curvature operator about �) is given by the second variation
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of the total energy functional E . For any volume-preserving admissible variation,
we have (see for the proof [18, Appendix])

E ′′(0) = −
∫

�

(
ω��ω + |��|2ω2 + Ricg(N , N )ω2

)
d A

+
∮

∂�

(
ω

∂ω

∂υ
− q ω2

)
ds,

(2.12)

where

ω = 〈ζ, N 〉g and q = 1

sin(γ )
�∂ M (ῡ, ῡ) − cot(γ ) ��(υ, υ).

Since for any smooth ω with
∫
�

ωd A = 0 there exits an admissible, volume-
preserving variation with variation vector field ω N as a normal part, we have now
the Jacobi operator about � that we define by duality as

〈L�,N ω, ω′〉 :=
∫

�

{
∇ω∇ω′ −

(
|��|2 + Ricg(N , N )

)
ω ω′} d A+

∮
∂�

q ω ω′ds.

Remark 2.3. Let us observe that any smooth transverse vector field N̂ along �

induces admissible volume preserving variation. The linearized mean curvature
operators L�,N and L

�,N̂ are linked by

L
�,N̂ ω̂ = L�,N (〈N , N̂ 〉g ω̂) + m N̂ T (H�) ω̂,

where N̂ T is the orthogonal projection of N̂ on T �. This shows that L
�,N̂ is self-

adjoint with respect to the inner product∫
�

ω̂ ω̂′ 〈N , N̂ 〉g d A.

2.4. The stereographic projection

We will denote by p : Rn → Sn the inverse of the stereographic projection from
the south pole. p = (

p1 , . . . , pn, pn+1
)

is a conformal parametrization of Sn and
for any z = (z1, . . . , zn) ∈ Rn ,

p(z) = (z, 1) µ(z) − En+1

=
(

2 z1

1 + |z|2 , . . . ,
2 zn

1 + |z|2 ,
1 − |z|2
1 + |z|2

)
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with conformal factor given by

µ(z) := 2

1 + |z|2 . (2.13)

We often use the projection of p on Rn and denote it by

p̃(z) := (z, 0) µ(z). (2.14)

We collect in the following lemma some properties of the function p which will
be useful later on, we omit here the proof which can be obtained rather easily with
elementary computations

Lemma 2.4. For every i, j, l = 1, . . . , n, there holds

〈pi , p j 〉 = µ2 δi j ; pn+1
i = −µ pi ; p̃i = −pi p̃ + µ Ei ;

〈pi i , pl〉 = µ2 pl − 2µ2 pi δil .

Here pi and pi j stands for ∂p
∂zi and ∂2p

∂zi ∂z j respectively.

Recall that the Laplace operator on Sn can be expressed in terms of the Eu-
clidean one by the formula

�Sn = 1

µ2 (�Rn − 〈pi i , pk〉∂k) .

Moreover, it is easy to verify that

�Sn p + np = 0.

It is clear that for any 0 < r ≤ 1 the restriction of p on Bn
r parameterizes a spherical

cap Sn(r), where Bn
r is the ball centered at 0 with radius r .

Given γ ∈ (0, π), if we let r2 = 1−cos(γ )
1+cos(γ )

, the image by p of Bn
r is the spherical

cap Sn(γ ) which intersects the horizontal plane Rn + cos(γ ) En+1 and makes an
angle γ with it. In particular we denote (henceforth define)

�(γ ) := p
∣∣∣

Bn
r(γ )

− cos(γ ) En+1; � := �
(π

2

)

Sn+ := Sn
(π

2

)
=

{
x = (x1, . . . , xn+1) ∈ Rn+1 : |x | = 1 and xn+1 > 0

}
.

For any 0 < r ≤ 1, denote by τr the unit outer normal vector of ∂ Bn
r , the normal

field (not unitary) of ∂Sn(r) in Sn(r) expressed as follows

∂p
∂τr

∣∣∣∣
∂ Bn

r

= µ |p̃|
(

pn+1 p̃
|p̃|2 − En+1

) ∣∣∣∣
∂ Bn

r

.
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Now when r2 = 1−cos(γ )
1+cos(γ )

, the unit normal in Sn(γ ) of ∂Sn(γ ) is given and denoted
by

η(γ ) = cot(γ ) �̃(γ ) − sin(γ ) En+1, in particular η := η
(π

2

)
= −En+1 (2.15)

while the unit normal of ∂Sn(γ ) in the plane Rn + cos(γ ) En+1 is �̃(γ )

|�̃(γ )| |∂ Bn
r
.

Observe that the angle between the two normals �̃(γ )

|�̃(γ )| and η(γ ) is γ along

∂Sn(γ ), namely since |�̃(γ )| = sin(γ ) on ∂ Bn
r ,〈

�̃(γ )

|�̃(γ )| , η(γ )

〉
= cos(γ ) on ∂Sn(γ ).

Consider the eigenvalue problem, u : Sn(γ ) → R,


�Sn(γ )u + nu = 0 in Sn(γ );
∂u

∂η(γ )
= cot(γ ) u on ∂Sn(γ ).

It is well known that the only solutions to the interior equation are the degree one
homogeneous polynomials on Sn+, spanned by the n+1 components of p. By (2.15)
the boundary condition is satisfied only by �i (γ ), i = 1, · · · , n.

2.5. Notation

In the following, expressions of the form L(w, 
) denote linear operators, in the
functions w and 
 j as well as their derivatives with respect to the vector fields
ε Xa and Xi up to second order, the coefficients of which are smooth functions on
Sn(γ ) × K bounded by a constant independent of ε in the C∞ topology (where
derivatives are taken using the vector fields Xā and Xi ). Also L̄(w, 
) are restric-
tions of expressions like L(w, 
) on ∂Sn(γ ) × K with L(w, 
) contains only one
derivative of w or 
 with respect to the vector fields ε Xa and Xi .

Similarly, expressions of the form Q(w, 
) denote nonlinear operators, in the
functions w and 
 j as well as their derivatives with respect to the vector fields
ε Xa and Xi still up to second order, whose coefficients of the Taylor expansion
are smooth functions on Sn(γ ) × K which are bounded by a constant independent
of ε in C∞ topology (where derivatives are taken using the vector fields Xa and
Xi ). Moreover, Q vanish quadratically in the pair (w, 
) at 0 (that is, its Taylor
expansion does not involve any constant nor any linear term). Also Q̄(w, 
) are
restrictions of expressions like Q(w, 
) on ∂Sn(γ ) × K with Q(w, 
) contains
only one derivative of w or 
 with respect to the vector fields ε Xa and Xi .

Finally, terms denoted O(εd) are smooth functions on Sn(γ ) × Kε which are
bounded by a constant times εd in C∞ topology (where derivatives are taken using
the vector fields Xa and Xi ). Also expressions like Ō(εd) are restrictions of O(εd)

on ∂Sn(γ ) × K .
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3. Geometry of tubes

We derive expansions as ε tends to 0 for the metric, second fundamental form and
mean curvature of S̄ε(Kε) and their perturbations.

3.0.1. Perturbed tubes

We now describe a suitable class of deformations of the geodesic tubes (in the
metric induced by Fε on Rm+1) S̄ε(Kε), depending on a section 
 of N Kε :=
Sn+ × Kε and a scalar function w on the spherical normal bundle (SN Kε)+ in ∂�ε.
We recall that (y1, y2 . . . , yk) ∈ Rk (respectively (z1, z2 . . . , zn) ∈ Bn

1 ) are the
local coordinate variables on Kε (respectively on Sn+). Letting 
 : K → Rn and
w : Bn

1 × Kε → R, consider

S0 : (y, z) �→ y × ε−1
(εy) + (1 + w(y, z)) �(z).

The nearby surfaces of S̄ε(Kε) is parameterized (locally) by

G(y, z) : (y, z) −→ S0(y, z) −→ Fε(S0(y, z))

namely

G(y, z) := Fε

(
y,

1

ε

(εy) + (1 + w(y, z))�̃(z), (1 + w(y, z))�n+1(z)

)
.

Since �n+1
∣∣∣
∂ Bn

1

= 0, it follows

G(y, z)
∣∣∣
∂ Bn

1

∈ ∂�ε for any y.

The image of this map will be called Sε(w, 
). In particular

Sε(0, 0) = S̄ε(Kε).

It will be understood that for any fixed point p = Fε(y, 0) ∈ Kε, 
(ε y) ∈ N Kε ⊂
Tp∂�ε and �(z) ∈ Sn+ ⊂ N Kε ⊕ REn+1 are in the tangent space at p of Rm+1

endowed with the metric induced by Fε. For more convenience we introduce the
following:

Notation. On Kε we will consider


 := 
 j E j 
a := ∂ya 
 j E j 
ab := ∂ya ∂yb 
 j E j

� := � j E j + �n+1 En+1 = �̃ + �n+1 En+1

�i := ∂zi �
j E j + ∂zi �

n+1 En+1 = �̃i + �n+1
i En+1.
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For simplicity, we will write

w j := ∂z j w;
wa := ∂ya w;
wi j := ∂zi ∂z j w;
wab := ∂ya ∂ybw;
waj := ∂ya ∂z j w .

It is easy to see that the tangent space to Sε(w, 
) is spanned by the vector fields

Za = G∗(∂ya ) = Xa + wa ϒ + �a + (1 + w)�n+1 DaVε, a =1, . . . , k

Z j = G∗(∂z j ) = (1 + w) ϒ j + w j ϒ + (1 + w)�n+1 D jVε, j =1, . . . , n,
(3.1)

where

� := 
 j X j ; �a := ∂ya 
 j X j ;
ϒ := � j X j + �n+1Vε; ϒi := ∂zi � j X j + ∂zi �n+1Vε

and

DaVε(y, (1 + w(y, z))�̃ + ε−1
(εy)) = ε
(
haα + (wa�l + 
l

a)hlα
)

Xα;
D jVε(y, (1 + w(y, z))�̃ + ε−1
(εy)) = ε

(
w j�

l + (1 + w)�l
j

)
hlα Xα.

(3.2)

3.0.2. The first fundamental form

In this paragraph we expand the coefficients of the first fundamental form of
Sε(w, 
). Using the expansions in Lemma 2.2, one can easily get

〈Xa, Xb〉=δab − 2 ε b
a(�) − 2 b

a (
) + O(ε2) + ε L(w, 
) + Q(w, 
)

〈Xi , X j 〉=δi j + ε

3

(〈R(�, Ei ) 
, E j 〉 + 〈R(
, Ei ) �, E j 〉
)

+ 1

3
〈R(
, Ei ) 
, E j 〉 + O(ε2) + ε2 L(w, 
) + ε Q(w, 
)

〈Xi , Xa〉 = O(ε2) + ε L(w, 
) + Q(w, 
).

(3.3)

These together with the fact that R(�̃, �̃) = 0 imply

〈ϒ, ϒ j 〉 = ε

3
〈R(
, �̃) �̃, �̃ j 〉 + 1

3
〈R(
, �̃) 
, �̃ j 〉

+ O(ε2) + ε2 L(w, 
) + ε Q(w, 
) .

(3.4)
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Using similar arguments, and the fact that 〈ϒ, ϒ〉 = 1 on Kε yields

〈ϒ, ϒ〉 = 1 + 1

3
〈R(
, �̃) 
, �̃〉 + O(ε2) + ε2 L(w, 
) + Q(w, 
) . (3.5)

Moreover

〈ϒi , ϒ j 〉 = 〈�i , � j 〉 + 1

3

(
〈R(
, �̃i ) �̃, �̃ j 〉 + 〈R(
, �̃ j ) �̃, �̃i 〉

)
(3.6)

+1

3
〈R(
, �̃i ) 
, �̃ j 〉 + O(ε2) + ε2 L(w, 
) + Q(w, 
).

Now, by (3.2) we have that

〈D jVε, ϒ〉 = ε(1 + w)〈h(�̃), �̃ j 〉 + εw j 〈h(�̃), �̃〉
+ O(ε2) + ε2 L(w, 
) + εQ(w, 
)

(3.7)

and
〈D jVε, ϒi 〉 = ε(1 + w)〈h(�̃i ), �̃ j 〉 + εw j 〈h(�̃), �̃i 〉

+ O(ε2) + ε2 L(w, 
) + εQ(w, 
) .
(3.8)

We are now in a position to expand the coefficients of the first fundamental form of
Sε(w, 
). We have:

Proposition 3.1. For any a, b ∈ {1, · · · , k} and i, j ∈ {1, · · · , n}, we have that

〈Za, Zb〉 = δab + 2ε�n+1hab − 2εb
a(�̃) − 2 b

a(
) + O(ε2)

+ε L(w, 
) + Q(w, 
) (3.9)

〈Za, Z j 〉 = 2ε�n+1h(�̃ j )
a + 〈
ā, �̃ j 〉+O(ε2)+εL(w,
)+Q(w,
) (3.10)

〈Zi , Z j 〉 = 〈�i , � j 〉 (1 + 2w) + 2ε(1 + 3w)�n+1〈h(�̃i ), �̃ j 〉
+2ε�n+1

(
〈h(�̃i ), �̃〉w j + 〈h(�̃ j ), �̃〉wi

)
+ε

3

(
〈R(�̃, �̃i ) 
, �̃ j 〉 + 〈R(�̃, �̃ j ) 
, �̃i 〉

)
+ wiw j (3.11)

+〈�i , � j 〉w2 + 1

3
〈R(
, �̃i ) 
, �̃ j 〉 + O(ε2)

+ε2 L(w, 
) + εQ(w, 
).

3.0.3. The normal vector field

In this paragraph we expand the unit normal to Sε(w, 
). Define the vector field

Ñ := − ϒ + α j Z j + βc Zc,
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it is the outer normal field along Sε(w, 
) if we can determine α j and βc so that Ñ
is orthogonal to all of the Zb and Zi . This leads to a linear system for α j and βa .

We have the following expansions

〈ϒ, Za〉 = wa + 〈
ā, �̃〉 + ε�n+1 (h(�̃))a + ε2 L(w, 
) + ε Q(w, 
); (3.12)

〈ϒ, Z j 〉 = w j + ε(1 + 2w)�n+1〈h(�̃), �̃ j 〉 + 2ε�n+1w j 〈h(�̃), �̃〉
+ε

3
〈R(
, �̃) �̃, �̃ j 〉 + 1

3
〈R(
, �̃) 
, �̃ j 〉 + O(ε2) (3.13)

+ε2 L(w, 
) + ε Q(w, 
),

These follow from (3.3) together with the fact that 〈ϒ, Za〉 = 0 and 〈ϒ, Z j 〉 = 0
on Kε.

Using Proposition 3.1, and some algebraic calculations, one can obtain

βc = wc + 〈
c, �̃〉 + ε�n+1h(�̃)c + O(ε2) + ε L(w, 
) + Q(w, 
). (3.14)

and

α j 〈� j , �i 〉 = wi + ε�n+1〈h(�̃), �̃i 〉 + ε�n+1〈h(�̃), �̃〉wi

−2ε�n+1
(
〈h(�̃l), �̃i 〉wl + h(�̃i )

awa + h(�̃i )
a〈
a, �̃〉

)
+1

3
ε〈R(
, �̃) �̃, �̃i 〉 − ε�n+1h(�̃)a〈
a, �̃i 〉 (3.15)

−2wwi − wa〈
a, �̃i 〉 − 〈
a, �̃〉〈
a, �̃i 〉
+1

3
〈R(
, �̃) 
, �̃i 〉 + O(ε2) + ε2 L(w, 
) + εQ(w, 
).

Using these and the fact that 〈� j , �i 〉 = µ2δi j , straightforward computations imply

|Ñ |−1 = 1 + ε�n+1
(

1

µ2
〈h(�̃), �̃i 〉wi + h(�̃)cwc + h(�̃)c〈
c, �̃〉

)

+1

6
〈R(
, �̃) 
, �̃〉 + 1

2

(
w2

c + 1

µ2
w2

j + 2wc〈
c, �̃〉 + 〈
c, �̃〉2
)

+O(ε2) + ε2 L(w, 
) + εQ(w, 
).

The unit normal to the perturbed geodesic tube is then given simply by N = Ñ
|Ñ | .

We summarize this in the following lemma

Proposition 3.2. The normal vector field N to Sε(w, 
) is given by N = Ñ
|Ñ | where

Ñ := − ϒ + α j Z j + βc Zc (3.16)

and where the coefficients α j and βc are given by formulas (3.15) and (3.14).
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Using the fact that �n+1
∣∣∣
∂ Bn

1

= 0 we can easily deduce:

Lemma 3.3. The perpendicularity condition is given by

〈N ,Vε〉 = (−1 + w) w j z
j + Ō(ε2) + ε2 L̄(w, 
) + ε Q̄(w, 
) on ∂(SN K )+,

Proof. Since �n+1
∣∣∣
∂ Bn

1

= 0 it follows that 〈Vε, −ϒ + βc Zc〉 = 0 on ∂ Bn
1 on the

other hand using the fact that R(Ei , Ei ) = 0 with ∂�̃
∂τ

∣∣∣
∂ Bn

1

= 0 (see Subsection 2.4)

we get

〈α j Z j ,Vε〉=(−1+w) w j�
n+1
j +Ō(ε2)+ε2 L̄(w, 
)+ε Q̄(w, 
) on ∂(SN K )+.

The lemma now follows since �n+1
j = −µ� j = −µ2z j and µ

∣∣∣
∂ Bn

1

= 1.

3.0.4. The second fundamental form

In this paragraph we expand the coefficients of the second fundamental form. Recall
that ∇ is the Levi-Civita connection on ∂� and h its second fundamental form, the
derivation for vector fields on ∂� yields

∂

∂zi
Xα(y, (1+w(y, z))�̃+ε−1
(εy))=ε(wi�

l +(1 + w)�l
i )

(∇Xl Xα−hlαVε
)
,

∂

∂ya
Xα(y,(1 + w(y,z))�̃+ε−1
(εy)) = εδab

(∇Xb Xα − hbαVε
)

+ ε
(
wa�l + 
l

a

) (∇Xl Xα − hlαVε
)
.

Proposition 3.4. The following expansions hold

〈
N ,

∂

∂ya
Za

〉
= −εa

a (�̃) + ε�n+1haa − waa − ε 〈
aa, �̃〉
− ε 〈R(
, Ea) Ea, �̃〉 + ε c

a(�̃) a
c (
)

− 2ε�n+1wah(�̃)a + ε

µ2
wl

(
a

a (�̃l) − haa�m+1
l

)
+ O(ε2) + ε2 L(w, 
) + εQ(w, 
);

(3.17)
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〈
N ,

∂

∂z j
Z j

〉
=µ2(1+w)−w j j−ε�n+1〈h(�̃),�̃〉w j j −2ε�n+1

j 〈h(�̃),�̃〉w j

+ ε(1+2w)
(
�n+1〈h(�̃ j ),�̃ j 〉−2�n+1

j 〈h(�̃),�̃ j 〉−�n+1〈h(�̃),�̃ j j 〉
)

+ ε

µ2
wk

(
2�n+1〈h(�̃k),�̃i i 〉+2�n+1

i 〈h(�̃k),�̃i 〉+�n+1
k 〈h(�̃i ),�̃i 〉

)

+ 2

3
ε 〈R(
, �̃ j ) �̃, �̃ j 〉 − ε

3
〈R(
, �̃) �̃, �̃ j j 〉

+ 2εwc

(
�n+1

j h(�̃ j )
c + �n+1h(�̃ j j )

c
)

+ 2ε〈
c̄, �̃〉
(
�n+1

j h(�̃ j )
c + �n+1h(�̃ j j )

c
)

+ ε�n+1h(�̃)c
(
〈
c, �̃ j j 〉 + µ2〈
c, �̃〉

)

+ ε�n+1h(�̃)c
(
wc〈�̃, �̃ j j 〉 + µ2wc

)
− 1

6
µ2〈R(
, �̃) 
, �̃〉

− 1

3
〈R(
, �̃) 
, �̃ j j 〉 − 1

2
µ2w2

c + 1

2
µ2|〈
c, �̃〉|2

− 1

2
w2

k + 2w2
j + 〈
c, �̃ j j 〉wc + 〈
c, �̃〉〈
c, �̃ j j 〉

+ (1 + 2w)αk〈� j j , �k〉 + O(ε2) + ε2 L(w, 
) + εQ(w, 
);

(3.18)

〈
N ,

∂

∂ya
Zb

〉
=−b

a(�̃)+ε�n+1hab−wab+O(ε2)+εL(w,
)+Q(w,
)) a �=b;

〈
N ,

∂

∂ya
Z j

〉
=ε�n+1

j h(�̃)a +ε�n+1h(�̃ j )
a −waj +O(ε2)+εL(w,
)+Q(w,
);

〈
N ,

∂

∂zi
Z j

〉
= −wi j − ε�n+1

i 〈h(�̃), �̃ j 〉 − ε�n+1
j 〈h(�̃), �̃i 〉

+ ε�n+1〈h(�̃i ), �̃ j 〉 − ε�n+1〈h(�̃), �̃i j 〉

+ αk〈�i j , �k〉 + O(ε2) + εL(w, 
) + Q(w, 
), i �= j.
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Proof. The proof is similar in spirit to the one of [10, Proposition 3.3]. So we will
be sketchy here referring to the aforementioned paper for more details. We have
that

∂

∂ya
Za = ε

(∇Xa Xa − haaVε
) + waaϒ + 2�n+1wa DaVε + ε
l

aa Xl

+ �n+1 Da DaVε +
(
O(ε2) + ε2L(w, 
) + εQ(w, 
)

)
Xα

+
(
O(ε2) + ε2L(w, 
) + εQ(w, 
)

)
Vε

and for a �= b

∂

∂ya
Zb = ε

(∇Xb Xa − habVε
) + wabϒ

+
(
O(ε2) + εL(w, 
) + Q(w, 
)

)
Xα

+
(
O(ε2) + ε2L(w, 
) + εQ(w, 
)

)
Vε;

∂

∂zi
Zi = wi iϒ + 2 wiϒi + 2ε�l�s

i wi
(∇Xs Xl − hslVε

) + 2�n+1 DiVε wi

+ (1 + w)ϒi i + (1 + w)
(

2�n+1
i DiVε + �n+1 Di DiV

)

+ ε(1 + 2w)�l
i�

s
i

(∇Xs Xl − hslVε
)

+
(
O(ε2) + ε2L(w, 
) + εQ(w, 
)

)
Xα

+
(
O(ε2) + ε2L(w, 
) + εQ(w, 
)

)
Vε;

and for i �= j

∂

∂zi
Z j = wi jϒ + wiϒ j + w jϒi + �n+1

i D jVε + �n+1
j DiVε + (1 + w)ϒi j

+ ε�l
i�

s
j

(∇Xs Xl − hslVε
)

+ �n+1 Di D jVε +
(
O(ε2) + εL(w, 
) + Q(w, 
)

)
Xα

+
(
O(ε2) + ε2L(w, 
) + εQ(w, 
)

)
Vε.
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Finally

∂

∂ya
Z j = ∂

∂z j
Za = ε�s

j

(∇Xs Xa − hasVε
) + wajϒ + waϒ j + �n+1

j DaVε

+
(
O(ε2) + ε2L(w, 
) + εQ(w, 
)

)
Xα

+
(
O(ε2) + ε2L(w, 
) + εQ(w, 
)

)
Vε.

Recalling the expansions, see [10, Lemma 2.1].

∇Xi X j = (O(ε) + L(w, 
) + Q(w, 
)) Xγ ,

∇Xa Xi = −b
a(Ei ) Xb + (O(ε) + L(w, 
) + Q(w, 
)) Xγ .

(3.19)

We will also need the following expansion which follows from the result of [10,
Lemma 2.2] (with obvious modifications).

∇Xa Xb =b
a(E j )X j − 〈R(ε �̃ + 
, Ea) E j , Eb〉 X j

+1

2

(
〈R(Ea,Eb)(ε�̃+
),Ej 〉−c

a(ε�̃+
)b
c (E j )−b

c (ε�̃+
)c
a(Ej )

)
Xj (3.20)

+(O(ε) + L(w, 
) + Q(w, 
)) Xc + (O(ε2) + ε L(w, 
) + Q(w, 
)) X j .

These implies in particular

〈ϒ, ∇Xa Xa〉 = �la
a (Ei )

(
δli + 2ε�n+1hli

)
− ε〈R(�̃, Ea)�̃, Ea〉

−〈R(�̃, Ea)
, Ea〉 − εc
a(�̃)a

c (�̃)

−c
a(�̃)a

c (
) + O(ε2) + εL(w, 
) + Q(w, 
).

On the other hand we have that

Da DaVε = εwaah(�̃)α Xα +
(
O(ε2) + ε2L(w, 
) + εQ(w, 
)

)
Xβ

+
(
O(ε2) + ε2L(w, 
) + εQ(w, 
)

)
Vε,

which implies

〈Da DaVε, ϒ〉 = εwaa〈h(�̃), �̃〉 + O(ε2) + ε2L(w, 
) + εQ(w, 
). (3.21)

Using these together with (3.14), (3.15) and Lemma 2.2, the first estimate follows
at once. For the other estimates one can proceed similarly.
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3.0.5. The mean curvature of perturbed tubes

Collecting the estimates of the last subsection we obtain the expansion of the mean
curvature of the hypersurface Sε(w, 
). In the coordinate system defined in the
previous sections, we get

m H(w, 
) = n − ε a
a (�̃) + ε �n+1 haa + ε �n+1

[
(n + 3)〈h(�̃), �̃〉 − h j j

]

+ O(ε2) − (
�Kεw + �Sn w + nw

)

− ε

(
〈 �K 
 + R(
, Ea) Ea, �̃ 〉 − c

a(
) a
c (�̃)

)

− ε�n+1〈h(�̃), �̃〉 �Sn w − 2ε(n + 3) �n+1〈h(�̃), ∇Sn w〉

+ 2ε�n+1 ∇2
Sn w : h − ε

(
〈h(�̃), �̃〉 + h j j + haa

)
〈∇Sn w, En+1〉

− (1 + 3n)ε�n+1h(�̃)a wa − 2ε�n+1h(∇Sn wa)a + ε a
a (∇Sn w)

− 2ε∇2
Kε

w : (�̃)+2ε�n+1haawaa −(3n+1)ε�n+1h(�̃)a〈
ā,�̃〉

+ ε �n+1h(
ā)a + 2ε�n+1h : (
)

+ n w2 + 2 − n

2
|∇Sn w|2 + 2 w �Sn w − n

2
(wa + 〈
ā, �̃〉)2

− 〈
ā, ∇Sn wa〉 − 2∇2
Kε

w : (
) + n + 2

6
〈R(
, �̃)
 , �̃〉

− 1

3
〈R(
, Ei )
 , Ei 〉 + O(ε2) + ε2 L(w, 
) + ε Q(w, 
).

Here we have used the formulas in Lemma 2.4, the fact that

�Sn = 1

µ2 (�Rn − 〈�i i , �k〉∂k) .

and the notation A : B = Ast Bst for two linear operators A and B. Where summa-
tion over repeated indices is understood.

Let us emphasize the use of the variables yā = εya on K . With an abuse of
notation, we call w the function w̄(ȳ) = w(y) = w(ε−1 ȳ) defined on K so that
εwā = wa and ε2wāā = waa . We first define the following operators appearing in



CONSTANT MEAN CURVATURE HYPERSURFACES 429

the above expansion

L1(w) : = −〈h(�̃), �̃〉 �Sn w − 2(n + 3) �n+1〈h(�̃), ∇Sn w〉

+ 2�n+1∇2
Sn w : h−

(
〈h(�̃),�̃〉 + h j j + haa

)
〈∇Sn w, En+1〉

− ε(1 + 3n)�n+1〈h(�̃), ∇K w〉 + ε�n+1h(∇Sn wā)a

− 2ε2∇2
K w : (�̃) + 2ε2�n+1haawāā,

(3.22)

J 1
 := −(3n +1)�n+1h(�̃)a〈
ā,�̃〉+�n+1h(
a)a +2�n+1h : (
), (3.23)

and the quadratic term

Q1(w, 
) : = n w2 + 2 − n

2
|∇Sn w|2 + 2 w �Sn w − n

2
(εwā + 〈
ā, �̃〉)2

−ε〈
ā, ∇Sn wā〉 − 2ε2∇2
K w : (
) (3.24)

+n + 2

6
〈R(
, �̃)
 , �̃〉 − 1

3
〈R(
, Ei )
 , Ei 〉.

Next, we define

Lε := ε2 �K + �Sn + n, L0 := �Sn + n

and the Jacobi operator about K in (∂�, ḡ), see Subsection 2.2

J := �⊥ − R⊥ + B.

Recall that (see Subsection 2.4) the outer unit normal to the boundary of ∂Sn+ in Sn+
is η = −En+1,

∂w

∂η
= −〈∇Sn+ w, En+1〉.

Using these definitions, we obtain the following result:

Proposition 3.5. Assume that K is a minimal submanifold, then the mean curva-
ture of Sε(w, 
) can be expanded as

m H(w, 
) = n + ε �n+1 haa + ε �n+1
[
(n + 3)〈h(�̃), �̃〉 − h j j

]
+ O(ε2)

− Lε w − ε 〈J
, �̃〉 + εL1w + εJ 1(
) + Q1(w, 
)

+ ε2 L(w, 
) + ε Q(w, 
) in Sε(w, 
).
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where L1 is defined in (3.22), J 1 is given in (3.23), while Q1 is a quadratic term
defined in (3.24). Moreover, the orthogonality condition is equivalent to the follow-
ing boundary condition on the function w:

〈N ,Vε〉 = −∂w

∂η
+ w

∂w

∂η
+ Ō(ε2) + ε2 L̄(w, 
) + ε Q̄(w, 
) on ∂Sε(w, 
).

(3.25)

Proof. The expression of the mean curvature can be obtained rather easily taking
into account the above definitions (with obvious modifications) and the minimality
of K which implies

a
a = 0.

With these notations finding w and 
 such that the equation m H = n and
〈N ,Vε〉 = 0 hold is equivalent to solve


Lε w + ε 〈J
, �̃〉
= ε �n+1 haa + ε �n+1

[
(n + 3)〈h(�̃), �̃〉 − h j j

]
+O(ε2) + εJ 1(
) + εL1w + Q1(w, 
)

+ε2 L(w, 
) + ε Q(w, 
) in Sn+ × K ,

∂w

∂η
= w

∂w

∂η
+ Ō(ε2) + ε2 L̄(w, 
) + ε Q̄(w, 
) on ∂Sn+ × K .

(3.26)

4. Adjusting the tube Sε(Kε)

In this section we annihilate the error terms (O(ε)) appearing in (3.26) at any given
order. The non-degeneracy of the submanifold K will play a crucial role in such
a construction. We denote by � the L2 projection on the subspace spanned by the
�i , i = 1, · · · , n and set (SN K )+ := Sn+ × K .

We set

ŵ(r) =
r∑

d=1

εdw(d) and 
̂r =
r−1∑
d=1

εd
(d).

Construction of w(1)

We first want to kill the term O(ε). This is equivalent to have


m H(ŵ(r), 
̂(r)) = n + O(ε2) in Sε(ŵ
(r), 
̂(r)),

〈N ,Vε〉 = Ō(ε2) on ∂Sε(ŵ
(r), 
̂(r)).
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This gives the following equation in w(1)

L0w
(1) = �n+1 haa + �n+1

[
(n + 3)〈h(�̃), �̃〉 − h j j

]
in (SN K )+;

∂w(1)

∂η
= 0 on ∂(SN K )+.

By the result from Subsection 2.4 (with γ = π
2 ) and Fredholm alternative theorem,

the solvability of the above system is possible provided∫
Sn+

(
�n+1 haa + �n+1

[
(n + 3)〈h(�̃), �̃〉 − h j j

])
�i dθ =0 for all i =1, · · · , n

which is the case by oddness, here dθ denotes the volume element on Sn+.
Notice that the variable ȳ is being considered as a parameter so that w(1) is as
smooth as the right-hand side in this variable.

Constructing w(2)

We turn now to the term of order ε2. We have




m H(ŵ(r), 
̂(r)) = n + O(ε3) in Sε(ŵ
(r), 
̂(r)),

〈N ,Vε〉 = Ō(ε2) on ∂Sε(ŵ
(r), 
̂(r)).

Since the terms involving 
 in Q1(εw(1), ε
(1)) are of the form ε3L(
(1)) and
Q(
̂(r), 
̂(r)), we are led to a system in w(2) and 
(1) given by

L0w
(2) = 〈J
(1), �̃〉 + O(1) + L1w(1)+ J 1(
(1)) +Q(
̂(r),
̂(r)) in (SN K )+

∂w(2)

∂η
= Ō(1) on ∂(SN K )+.

Note that �J 1 = 0 and � Q(
(1), 
(1)) = 0 so the above problem is solvable if
and only if∫

Sn+
〈J
(1), �̃〉 �i dθ +

∫
Sn+

(
O(1) + L1w(1)

)
�i dθ

+
∮

∂Sn+
Ō(1) �i d θ̄ = 0 for all i = 1 · · · n,

where dθ and d θ̄ are the volume elements on Sn+ and ∂Sn+ respectively. This gives
an equation on 
(1) which can be solved using the non degeneracy of the subman-
ifold K because in this case J is invertible. Once this is done, we obtain readily
w(2).



432 MOUHAMED MOUSTAPHA FALL AND FETHI MAHMOUDI

Constructing w(r)

We want to construct an approximate solution as accurate as possible, and to do
so we will use an iterative scheme. Suppose the couple (w(r−1), 
(r−2)) is already
determined. To find (w(r), 
(r−1)), it suffices to check that when we project on
the Kernel of L0, the operator involving 
(r−1) should be only the invertible Jacobi
operator J. This is the case since the only term that can bring 
(r−1) at this iteration
step is Q1

r−1(w, 
) which gives only terms of the form ε2
 and Q(
̂(r), 
̂(r))

moreover �J 1
r−1(


(r−1)) = � Q(
̂(r), 
̂(r)) = 0.
The index r appearing in the linear and quadratic terms means that they depend

on the iteration step while the operator J 1
r keep its same properties because it is

influenced only by the even quadratic terms in Q(
̂(r) +
, 
̂(r) +
) appearing in
Q1(ŵ(r) + w, 
̂(r) + 
).

By induction, in the same argument, for every r ∈ N, we can find (w(d), 
(d)),
d = 1, · · · , r smooth such that

ŵ(r) =
r∑

d=1

εdw(d) = O(ε) and 
̂(r) =
r−1∑
d=1

εd
(d) = O(ε) (4.1)

and that

m H(ŵ(r), 
̂(r)) = n + O(εr+1) in Sε(ŵ
(r), 
̂(r)),

〈N ,Vε〉 = Ō(εr+2) on ∂Sε(ŵ
(r), 
̂(r)).

Remark 4.1. Notice that as in [11] we omitted the terms involving derivatives with
respect to ȳ of the function w (by considering L0 instead of Lε), this is due to
the fact that since w is slow dependent on ya , when differentiating with respect to
yā we pick up an ε at each differentiation, this gives us smaller terms. However,
when applying elliptic regularity theorems we might loose two derivatives at each
iteration. This indeed is not a problem since one needs just a finite number of
iterations. We refer the reader to [11], where a more explanation is given.

We are left to find w and 
 such that

m H(ŵ(r) + w, 
̂r + 
) = n in Sε(ŵ
(r) + w, 
̂r + 
),

〈N ,Vε〉 = 0 on ∂Sε(ŵ
(r) + w, 
̂r + 
).

(4.2)

We define the linearized mean curvature operator about Sε(ŵ
r , 
̂r )

Lε,r (w, 
) = 1

ε

(
Lε w + εL1

r (w)
)

+ 〈J
, �̃〉 + J 1
r (
) + εLr (w, 
).

The index r appearing in the constant, linear and quadratic terms means that they
depend on the iteration step but keep there properties.
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We notice that Lε,r is not precisely the usual Jacobi operator because we are pa-
rameterizing this hypersurface as a graph over Sε(ŵ

r , 
̂r ) using the vector field
−ϒ rather than the unit normal N .

Using Remark 2.3 (with γ = π
2 ), suppose that � = Sε(ŵ

r , 
̂r ) and N̂ = −ϒ .
From (4.1) and Proposition 3.2 we have

〈N , −ϒ〉 = 1 + O(ε2).

Furthermore, from Proposition 3.1 and (4.1), the volume forms of the tubes
Sε(ŵ

r , 
̂r ) and (SN K )+ are related by

dvolSε(ŵr ,
̂r )
= (1 + O(ε)) dvol(SN K )+ .

We define δε,r > 0 by

〈N , −ϒ〉 dvolSε(ŵr ,
̂r )
= δε,r dvol(SN K )+ . (4.3)

Multiplying by δε,r , the system (4.2) will change the terms L1
r , Lr , L̄r , the constant

and quadratic terms will keep there properties and there will be a new linear operator
L̄1

r (w) on the boundary. We keep the same notations for these terms and call Lε,r

the new selfadjoint operator δε,r Lε,r with respect to the standard L2(SN K )+-inner
product.

Now since L̄r (w, 
) and L̄1
r (w) involves only terms of the form w, ∂zi w,

we may extend L̄r (w, 
), L̄1
r (w) and Ōr (ε

r+1) in (SN K )+ and this will just add
some terms in Lr (w, 
), L1

r (w) and Or (ε
r ) respectively which will maintain there

properties.
Without loss of generality we may replace the solvability of (4.2) with the

following equation.

Lε,r (w, 
) = 1

ε
Qr (w, 
) + Or (ε

r ) in (SN K )+,

∂w

∂η
= 1

ε
Q̄r (w, 
) on ∂(SN K )+.

(4.4)

We will try to invert the linear operator on the left-hand side and this will lead us to
study the spectrum of the operator by selfadjointness.

5. Spectral analysis

Function space

Fix 1
2 > s > 0. For any v ∈ L2(SN K )+ := L2(Sn+ × K ), set

〈
, �̃〉 := � v, ε−1+2s w := �⊥v,
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so that
v = ε1−2s w + 〈
, �̃〉. (5.1)

It will be understood that 
i for i = 1, · · · , n are the components of � v on N K .
Conversely if couple a (w, 
) ∈ �⊥ L2(SN K )+ × L2(K , N K ) is given, we asso-
ciate to it a function v as in (5.1).

Later we will often decompose

w = w0 + w1 (5.2)

where w0 is a function on K and w1 has zero mean value with respect to the angular
integrals.

The volume element of (SN K )+ = Sn+ × K will be denoted by dθ d ȳ.
As it will be apparent later, we will consider the following weighted Hilbert sub-
spaces of L2(SN K )+

L2
ε :=

{
v = ε1−2s w + 〈
, �̃〉 ∈ L2(SN K )+ : ε−2s

∫
(SN K )+

|w|2 dθ d ȳ

+
∫

K
|
|2 d ȳ < ∞

}

with corresponding norm

‖v‖2
L2

ε
:= ε−2s

∫
(SN K )+

|w|2 dθ d ȳ +
∫

K
|
|2 d ȳ.

We also define

H1
ε :=

{
v ∈ L2

ε : ε−2s
∫

(SN K )+
(ε2 |∇K w|2 + |∇Sn+w|2 + |w|2) dθ d ȳ

+
∫

K
(|∇K 
|2 + |
|2) d ȳ < ∞

}

with corresponding norm

‖v‖2
H1

ε
:=ε−2s

∫
(SN K )+

(ε2|∇K w|2+|∇Sn+w|2+|w|2) dθ d ȳ+
∫

K
(|∇K 
|2+|
|2) d ȳ.

Let |Sn+| denote the volume of Sn+. Notice that

∫
Sn+

(�i )2 dθ = |Sn+|
n + 1

for all i = 1 · · · n.

We define �n := |Sn+|
n+1 .
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With these definitions in mind we redefine Lε,r by duality as follows∫
(SN K )+

vLε,r v′ dθ d ȳ := −ε−2s
∫

(SN K )+
ε2w′ �K w dθ d ȳ

+ε−2s
∫

(SN K )+
(∇Sn+ w ∇Sn+ w′ − n w w′) dθ d ȳ

+�n

∫
K

〈J
, 
′〉 d ȳ

+
∫

(SN K )+
(J 1

r (
) + L1
r (w) + εLr (w, 
)) (ε1−2s w′ + 〈
′, �̃〉) dθ d ȳ.

We associate to Lε,r its quadratic bi-linear form

Cε,r (v, v′) :=
∫

(SN K )+
vLε,r v′ dθ d ȳ,

and the associated quadratic form Qε,r (v) := Cε,r (v, v).
As mentioned in the first section, following [11], we want to find the values

of ε for which the operator Lε,r is invertible. By selfadjointness this leads to find
the values of ε for which the eigenvalues of the form Qε,r are bounded away from
zero. Such techniques requires first that our form should be very close to a model
one that we can characterize its spectrum (just the small eigenvalues). Secondly, to
understand the behavior of small eigenvalues seeing as “set” valued functions in ε.
We will estimate the Morse index of Qε,r and prove the monotonicity of its small
eigenvalues. The former can be done using Weyl’s asymptotic formula and the latter
can be obtained by applying a result by Kato. We shall do this in the remaining of
this section.
We define the model form, by duality, as

C0(v, v′) := −ε−2s
∫

(SN K )+
ε2w′ �K w dθ d ȳ

+ε−2s
∫

(SN K )+
(∇Sn+ w ∇Sn+ w′ − n w w′) dθ d ȳ

+�n

∫
K

〈J
, 
′〉 d ȳ

and the associated quadratic form Q0(v) := C0(v, v).

Proposition 5.1. There exists a constant c > 0 (independent of r) such that∣∣Cε,r (v, v′) − C0(v, v′)
∣∣ ≤ c εs ‖v‖H1

ε
‖v′‖H1

ε
. (5.3)



436 MOUHAMED MOUSTAPHA FALL AND FETHI MAHMOUDI

Proof. First of all we notice that in L1
r (w) their may appear expressions of the forms

w, ε∂ya w, ε2 ∂ya ∂ybw, ∂z j w, ∂z j ∂z j ′ w. Nevertheless after integrating by parts and
using Hölder inequality there holds∣∣∣∣

∫
(SN K )+

ε1−2sw′ L1
r (w) dθ d ȳ

∣∣∣∣ ≤ εc‖v‖H1
ε
‖v′‖H1

ε
,

and by definition of the H1
ε norm∣∣∣∣

∫
(SN K )+

〈
′, �̃〉L1
r (w) dθ d ȳ

∣∣∣∣ ≤ cεs‖ε1−2sw‖H1
ε
‖
′‖L2(K ,N K )

≤ cεs‖v‖H1
ε
‖v′‖H1

ε
.

Furthermore �J 1(
) = 0. Now it is clear that even if J 1
r (
)+ Lr (w, 
) involves

terms of the form w, ε∂ya w, ε ∂ya ∂ybw, ∂z j w, ∂z j ∂z j ′ w and also 
 j , ∂ya 
 j and

∂ya ∂yb 
 j , in any case after integration by parts and using Hölder inequality we get

∣∣∣∣
∫

(SN K )+
(ε−1 J 1

r (
) + Lr (w, 
)) (ε1−2s w′ + 〈
′, �̃〉) dθ d ȳ

∣∣∣∣ ≤ c‖v‖H1
ε
‖v′‖H1

ε
.

The result follows at once.

The Morse index of Qε,r

Define the two quadratic forms

Q±(v) := Q0(v) ± γ εs ‖v‖2
H1

ε
.

From (5.3), if γ > 0 is sufficiently large and ε small enough, then

Q− ≤ Qε,r ≤ Q+,

so that the index of Qε,r is bounded by those of Q+ and Q−.
Given any function w defined on (SN K )+, we set

D±
0 (w) := (1 ± γ εs)

∫
K

ε2 |∇K w|2 d ȳ − (n ∓ γ εs)

∫
K

|w|2 d ȳ,

D±
1 (w) := (1 ± γ εs)

∫
(SN K )+

(ε2 |∇K w|2 + |∇Sn+w|2) dθ d ȳ

− (n ∓ γ εs)

∫
(SN K )+

|w|2 dθ d ȳ,
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and finally,

D±(
) := −(1 ± γ εs)

∫
K

〈J
, 
〉 d ȳ.

With these definitions in mind, we have

Q±(v) = (n + 1)�n ε−2s D±
0 (w0) + ε−2s D±

1 (w1) + �n D±(
),

if we decompose v = ε1−2s w + 〈
, �̃〉 and further decompose w = w0 + w1
as usual. Following [10, Section 6.3] it is easy to see that if (1 ± γ εs) > 0 then
the index of D± is the index of K . Moreover the index of D±

1 is equal to zero if
2 (n + 1) (1 − γ εs) − (n + γ εs) > 0 because

� w1 = 0 and
∫

Sn+
w1 dθ = 0

hence ∫
Sn+

|∇Sn+w1|2 dθ ≥ 2 (n + 1)

∫
Sn+

|w1|2 dθ.

This shows that the asymptotic behavior of the index of Qε,r should be determined
by D±

0 . It is the case since its index is given by

�{ j : (1 ± γ εs)λ j < (n ∓ γ εs)},
where λ j are the eigenvalues of −ε2�K counted with multiplicities. Now using
Weyl’s formula one obtain its index,

Ind D±
0 ∼ cK

( n

ε2

) k
2
.

Collecting these estimates, one obtains the following:

Lemma 5.2. The Morse index of Qε,r is asymptotic to cε−k when ε tends to zero,
where c depends only on m and K .

Approximate eigenfunctions

In order to apply Kato’s theorem [7] we need to characterize the eigenfunctions
(eigenspaces) corresponding to small eigenvalues. We prove:

Lemma 5.3. Let σ be an eigenvalue of Lε,r and v = ε1−2s w + 〈
, �̃〉 a corre-
sponding eigenfunction and ε1−2s w0 = ∫

Sn+ v dθ is the decomposition from (5.2).
There exist constants c, c0 > 0 such that if |σ | ≤ c0, then

‖v − ε1−2s w0‖2
H1

ε
≤ c εs ‖v‖2

H1
ε
,

for all ε > 0 small enough.
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Proof. For any v′ = ε1−2s w′ + 〈
′, �〉, we have

Cε,r (v, v′) = σ

∫
(SN K )+

(ε2−4sw w′ + 〈
, �〉〈
′, �〉) dθ d ȳ

= σ

∫
(SN K )+

ε2−4sw w′ dθ d ȳ + σ �n

∫
K

〈
, 
′〉 d ȳ.

In addition, (5.3) gives∣∣∣∣
∫

(SN K )+
ε−2s(ε2 ∇K w ∇K w′ + ∇Sn+w∇Sn+w′ − (n + σ ε2−4s) w w′) dθ d ȳ

+ �n

∫
K
(〈J
, 
′〉 − σ 〈
, 
′〉) d ȳ

∣∣∣∣ ≤ c εs ‖v‖H1
ε
‖v′‖H1

ε
.

(5.4)

Step 1. Let 
′ = 0 and w′ = w1 to get∣∣∣∣
∫

(SN K )+
ε−2s(ε2 |∇K w1|2 + |∇Sn+w1|2 − (n − σ ε2−4s) |w1|2) dθ d ȳ

∣∣∣∣
≤ c εs ‖v‖H1

ε
‖ε1−2s w1‖H1

ε
.

However, since

� w1 = 0 and
∫

Sn+
w1 dθ = 0,

we have ∫
Sn+

|∇Sn+w1|2 dvolSn+ ≥ 2 (n + 1)

∫
Sn+

|w1|2 dθ,

hence∣∣∣∣
∫

(SN K )+
ε−2s(ε2 |∇K w1|2 + 1

2
|∇Sn+w1|2 + (1 − |σ | ε2−4s) |w1|2) dθ d ȳ

∣∣∣∣
≤ c εs ‖v‖2

H1
ε
.

This implies that
‖ε1−2s w1‖2

H1
ε

≤ c εs ‖v‖2
H1

ε
,

for all ε ∈ (0, 1), provided |σ | ≤ 1/2.
Step 2. Now let w′ = 0 and 
′ = 
+ (respectively 
′ = 
−) in (5.4), where 
+
(respectively 
−) is the L2 projection of 
 over the space of eigenfunctions of J
associated to positive (respectively negative) eigenvalues. This yields∣∣∣∣

∫
K
(〈J
, 
±〉 − σ 〈
, 
±〉) d ȳ

∣∣∣∣ ≤ c εs ‖v‖H1
ε
‖〈
±, �̃〉‖H1

ε
.
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Since J is invertible, there exists c1 > 0 such that

c1 ‖〈
±, �̃〉‖2
H1

ε
≤

∣∣∣∣
∫

K
〈J
, 
±〉 d ȳ

∣∣∣∣ .
Hence

(c1 − |σ |) ‖〈
±, �̃〉‖2
H1

ε
≤ c εs ‖v‖2

H1
ε
.

This conclude the proof with c0 := min{1/2, c1/2}.
Remark 5.4. If v is an eigenspace corresponding to an eigenvalue given by the
above lemma, then it satisfies∣∣∣∣

∫
(SN K )+

ε−2s(ε2 |∇K w|2 + |∇Sn+w|2 − (n + σε2−4s) |w|2) dθ d ȳ

+ �n

∫
K
( 〈J
, 
〉 − σ 〈
, 
〉) d ȳ

∣∣∣∣ ≤ c εs ‖v‖2
H1

ε
,

and ∣∣∣∣
∫

(SN K )+
ε−2s(ε2 |∇K w|2 + |∇Sn+w|2 − n |w|2) dθ d ȳ

∣∣∣∣ ≤ c εs ‖v‖2
H1

ε
. (5.5)

Notice that ∇Sn+w = ∇Sn+w1 if w is decomposed as w = w0 + w1 one has∣∣∣∣
∫

(SN K )+
ε−2s(ε2 |∇K w|2 − n |w|2) dθ d ȳ

∣∣∣∣ ≤ c εs ‖v‖2
H1

ε
,

so that

ε−2s
∫

(SN K )+
ε2 |∇K w|2 dθ d ȳ ≤ c εs ‖v‖2

H1
ε

+ nε−2s
∫

(SN K )+
|w|2 dθ d ȳ.

In particular we have
‖v‖H1

ε
≤ c‖v‖L2

ε
.

Variation of small eigenvalues with respect to ε

To understand the behavior of small eigenvalues of the symmetric quadratic form
Qε,r , we need to apply a result by Kato, see [7]. Considering the eigenvalues σ(ε)

as differentiable multivalued function in ε, the result states that

∂εσ ∈
{∫

(SN K )+
v (∂εLε,r ) v dθ d ȳ : Lε,rv = σ v, ‖v‖L2 = 1

}
. (5.6)

An good estimate of a bound for the set on the right of (5.6) allows one to estimate
the spectral gaps of the linearized operator when the parameter ε is small, see [10,
Section 6.3].

This is indeed given in the following lemma.
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Lemma 5.5. There exist constants c1, c > 0 such that, if σ is an eigenvalue of Lε,r
with |σ | < c1, then

ε ∂εσ ≥ 2 n − c εs,

provided ε is small enough.

Proof. We have just to provide bounds for the set on the right of (5.6) using the
above remark.

Assume that Lε,rv = σ v, but rather than normalizing the function v by
‖v‖L2 = 1, assume instead that ‖v‖L2

ε
= 1. In order to compute ∂εLε,r , recall

that
w = ε−1+2s �⊥v and that 〈J
, �̃〉 = � v,

so we can write

Lε,r v = −ε2s�K (�⊥ v) + 1

ε2−2s
L0 (�⊥ v) + � v + 1

ε1−2s
L1

r (�⊥ v)

+J 1 (J−1
r � v) + ε Lr (ε

−1+2s �⊥v,J−1� v).

Since � and �⊥ are independent of ε, we have

∂εLε,rv = −2sε−1+2s�K (�⊥ v) + (−2 + 2s)ε−3+2s L0 (�⊥v)

+(−1 + 2s)ε−2+2s L1
r (�⊥ v) + L̃r (ε

−1+2s �⊥v,J−1� v),

where the operator L̃r varies from line to line but satisfies the usual assumptions.
This now gives∣∣∣∣

∫
(SN K )+

v (∂εLε,r ) v dθ d ȳ − 2ε−1−2s
∫

(SN K )+
ε2|∇K w|2 dθ d ȳ

+ (2 − 2s)

ε
ε−2s

∫
(SN K )+

(ε2|∇K w|2 + |∇Sn+w|2 − n |w|2) dθ d ȳ

∣∣∣∣
≤ c ‖v‖2

H1
ε

+
∣∣∣∣1 − 2s

ε

∫
(SN K )+

〈
, �̃〉L1
r (w) dθ d ȳ

∣∣∣∣
≤ c

ε1−s
‖v‖2

H1
ε
.

Consequently if v is an eigenfunction of Lε,r with corresponding eigenvalue |σ | ≤
c0, where c0 is given in the previous lemma, by the inequality (5.5), see the above
remark, we have∣∣∣∣
∫

(SN K )+
v (∂εLε,r ) v dθ d ȳ − 2ε−1−2s

∫
(SN K )+

ε2|∇K w|2 dθ d ȳ

∣∣∣∣ ≤ c

ε1−s
‖v‖2

H1
ε
.

(5.7)
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Again from the above remark, one gets

ε−1−2s
∫

(SN K )+
ε2|∇K w|2 dθ d ȳ ≤ c ε−1+s ‖v‖2

H1
ε
+n ε−1−2s

∫
(SN K )+

|w|2 dθ d ȳ.

If we normalize v by ‖v‖L2
ε

= 1 then inserting this into (5.7) we get

∣∣∣∣
∫

(SN K )+
v (∂εLε,r ) v dθ d ȳ − 2

ε
n

∣∣∣∣ ≤ c

ε1−s
(5.8)

for all eigenfunction v such that Lε,rv = σ v which is normalized by ‖v‖L2
ε

= 1.

Now since ||v||L2 ≤ ‖v‖L2
ε
, we conclude that

inf
Lεv=σ v

‖v‖L2=1

∫
(SN K )+

v (∂εLε) v dθ d ȳ ≥ inf
Lεv=σ v

‖v‖
L2
ε
=1

∫
(SN K )+

v (∂εLε) v dθ d ȳ,

and (5.8) implies that

∂εσ ≥ 2

ε
n − c

ε1−s
.

This completes the proof of the result.

6. Proof of Theorem 1.1

Using Lemma 5.2 and Lemma 5.5, reasoning as for the proof of [10, Lemma 6.3]
we can find a sequence of open interval Ii , i ∈ N such that the smallest eigenvalue
of Lε,r is bounded away from zero for any ε ∈ ∪i Ii . More precisely we have:

Lemma 6.1. Fix any q ≥ 2. Then there exists a sequence of disjoint nonempty
open intervals Ii = (ε−

i , ε+
i ), ε±

i → 0 and a constant cq > 0 such that when
ε ∈ I q := ∪i Ii , the operator Lε,r is invertible and

(Lε,r )
−1 : L2

ε −→ L2
ε,

has norm bounded by cq ε−k−q+1, uniformly in ε ∈ I . Furthermore, I q := ∪i Ii
satisfies ∣∣∣H1((0, ε) ∩ I q) − ε

∣∣∣ ≤ c εq , ε ↘ 0.

For p ∈ N and 0 < α < 1, we denote by C p,α the usual Hölder spaces on the
closure of (SN K )+.
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Lemma 6.2. Let f ∈ C0,α and v satisfy

Lε,r v = f.

Then there exit a constant c > 0 (independent of ε but depend on r) and R > 0
depending only on q, α, s and k such that

‖v‖C2,α ≤ c ε−R ‖ f ‖C0,α

for any ε ∈ I q .

Proof. Fix q ≥ 2. Observe that by definition of the weighted norm of L2
ε , from

Lemma 6.1 we have
‖v‖L2 ≤ cq ε−k−q+1−s ‖ f ‖L2 .

By standard elliptic regularity theory, there exists c > 0 (depending on r ) such that
the following Hölder estimate holds

ε2+α‖v‖C2,α ≤ c ε2 ‖ f ‖C0,α + c ε− k
2 ‖v‖L2 .

From these last two inequalities, we can choose R > 3k
2 + q + α + 1 + s.

We end the proof of the main theorem by finding a fixed point for the mapping

Tε,r (v) := −(Lε,r )
−1 {Or (ε

r ) + Nε,r (v)
}
,

where∫
(SN K )+

Nε,r (v) v′ dθ d ȳ :=
∫

(SN K )+
ε−1 Qr (ε

−1+2s �⊥ v, � v) v′ dθ d ȳ

+
∮

∂(SN K )+
ε−1 Q̄r (ε

−1+2s �⊥ v, � v) v′ d θ̄ d ȳ.

Since by definition, Qr and Q̄r are (at least) quadratic we have

‖Nε,r (v)‖C0,α = ε−2+2s O(‖v‖C2,α ) ‖v‖2
C2,α ;

‖Nε,r (v1) − Nε,r (v2)‖C0,α = ε−2+2s O(‖v1‖C2,α , ‖v2‖C2,α )‖v1 − v2‖C2,α .

Now we fix r > 2 R + 2 − 2 s. By Lemma 6.2 and the above inequalities, for every
ε ∈ I q , Tε,r (v) maps the ball

{
v ∈ C2,α : ‖v‖C2,α ≤ C εr+1−R

}
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into itself moreover it is a contraction. Therefore it has a unique fixed point v =
ε1−2s w + 〈
, �̃〉 in the ball yielding

m H(ŵ(r) + w, 
̂r + 
) = n in Sε(ŵ
(r) + w, 
̂r + 
) ⊂ �ε,

〈N ,Vε〉 = 0 on ∂Sε(ŵ
(r) + w, 
̂r + 
) ⊂ ∂�ε.

If ε ∈ I q is sufficiently small then rescaling back, the tube ε Sε(ŵ
(r) +w, 
̂r +
),

is an embedded hypersurface of � with constant mean curvature equal to n
m ε−1 and

intersecting the boundary of � perpendicularly along its boundary.

Remark 6.3 (Existence of stationary capillary hypersurfaces). Letting γ∈(0,π)

be an angle, recall from Subsection 2.1 that (y1, y2 . . . , yk) ∈ Rk (respectively
(z1, z2 . . . , zn) ∈ Bn

r(γ )) are the local coordinate variables on Kε (respectively on

Sn(γ )), where r(γ ) := 1−cos γ
1+cos(γ )

(see Subsection 2.4) and

�(γ ) := p
∣∣∣

Bn
r(γ )

− cos(γ ) En+1

parameterizes the spherical cap Sn(γ ) which intersects the horizontal plane Rm

with angle γ .
As in the case where γ = π

2 , we can use the same class of deformations letting

 : K → N Kε and w : Bn

γ × Kε → R, consider

Sγ : (y, z) �→ y × ε−1
(εy) + (1 + w(y, z)) �(γ ).

The surfaces nearby a geodesic tube around Kε which make an angle almost equal
to γ with ∂�ε can be parameterized (locally) by

Gγ (y, z) : (y, z) −→ Sγ (y, z) −→ Fε(Sγ (y, z)),

namely

Gγ (y, z) := Fε

(
y,

1

ε

(εy) + (1 + w(y, z))�̃(γ ), (1 + w(y, z))�n+1(γ )

)
.

Notice that �n+1(γ )

∣∣∣
∂ Bn

r(γ )

= 0, so there holds

Gγ (y, z)
∣∣∣
∂ Bn

r(γ )

∈ ∂�ε for any y

The image of this map will be called Sγ
ε (w, 
).

Observe that the hypersurfaces close to Sγ
ε (0, 0) are parameterized using the vector

field −ϒ(γ ) = � j (γ ) X j + �n+1(γ )Vε rather than the normal � := p j X j +
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pn+1Vε because it is more reasonable if we want the boundary of Sγ
ε (w, 
) to

be on ∂�ε without imposing simultaneously a Neumann and Dirichlet boundary
condition on w. Suppose Z j (γ ), Za(γ ) span the tangent space of Sγ

ε (w, 
) as in
Paragraph 3.0.3, we can obtain the normal fields N (γ ) by finding α j (γ ) and βa(γ )

so that
N (γ ) = −� + α j (γ )Z j (γ ) + βa(γ )Za(γ ).

As we did in Section 3, the mean curvature at every point of Sγ
ε (w, 
) can be

obtained:

m H(w, 
)

= n − ε

(
a

a (p̃) + pn+1 haa + pn+1
[
3〈h(p̃), p̃〉 − h j j

] + n �n+1(γ )〈h(p̃), p̃〉
)

+O(ε2) −
(

ε2�K (〈�(γ ), p〉w) + �Sn (〈�(γ ), p〉w) + n (〈�(γ ), p〉w)

)

−ε

(
〈 �K 
 + R(
, Ea) Ea , p̃ 〉 − c

a(
) a
c (p̃)

)

−ε

(
(3n + 1) �n+1(γ )h(p̃)a〈
ā, p̃〉 + pn+1h(
ā)a + 2pn+1h : (
)

)
−n

2
(εwā + 〈
ā, p̃〉)2 − 〈
ā, ε∇Sn wā〉 − 2ε2∇2

K w : (
)

+n + 2

6
〈R(
, p̃)
 , p̃〉 − 1

3
〈R(
, Ei )
 , Ei 〉

+ε L(w) + ε2 L(w, 
) + Q(w) + ε Q(w, 
).

Moreover (recall that Vε is the interior normal of ∂�ε) using the fact that

�n+1(γ )

∣∣∣
∂ Bn

r(γ )

= 0, the equation 〈 − Vε, N 〉 = cos(γ ) is equivalent to

〈�(γ ), p〉(1 − w)
∂w

∂η(γ )
= Ō(ε2) + ε2 L̄(w, 
)

+Q̄1(w, 
) + ε Q̄(w, 
) on ∂Sn(γ ) × K ,

which is again equivalent to

∂(〈�(γ ), p〉w)

∂η(γ )
= w

∂〈�(γ ), p〉
∂η(γ )

+ Ō(ε2) + ε2 L̄(w, 
) + Q̄1(w, 
) + Q̄(w)

+ε Q̄(w, 
) on ∂Sn(γ ) × K

= w cot(γ ) + Ō(ε2) + ε2 L̄(w, 
) + Q̄1(w, 
)

+Q̄(w) + ε Q̄(w, 
) on ∂Sn(γ ) × K ,
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where

Q̄1(w, 
) := cot(γ )

(
εwā〈
ā, p̃〉 + 〈
ā, p̃〉〈
ā, p̃〉 − 1

3
〈R(
, p̃) 
, p̃〉

)
.

Using the results from Section 2.4 and from Section 4, one can adjust the tube
to Sγ

ε (ŵ(r), 
̂(r)) accurately. Moreover with the decomposition of the functions
v = ε1−2s w + 〈
, p̃〉 ∈ L2(Sn(γ ) × K ) as in (5.1) we conclude that the spectral
analysis of the linearized mean curvature operator over Sγ

ε (ŵ(r), 
̂(r)) carried out
as we obtain in Section 5 in the new weighted Hilbert subspaces of L2(Sn(γ ) × K )

L2
ε,γ :=

{
v = ε1−2s w + 〈
, p̃〉 ∈ L2(Sn(γ ) × K ) :

ε−2s
∫

Sn(γ )×K
〈�(γ ), p〉|w|2 dθ(γ ) d ȳ +

∫
K

|
|2 d ȳ < ∞
}

{
v ∈ L2

ε,γ : ε−2s
∫

Sn(γ )×K
〈�(γ ), p〉(ε2|∇K w|2+ |∇Sn(γ )w|2+ |w|2) dθ(γ ) d ȳ

+
∫

K
(|∇K 
|2 + |
|2) d ȳ < ∞

}
.

Under the usual assumptions on K , if ε ∈ I q is sufficiently small then rescaling
back, we can find a couple (w, 
) so that the tube ε Sγ

ε (ŵ(r) + w, 
̂r + 
) , is an
embedded hypersurface of � with constant mean curvature n

m ε−1 and intersecting
∂� with and angle γ . This yields a set of stationary capillary hypersurfaces in �

with constant “contact angle” γ and condensing to the submanifold K .
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