
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5)
Vol. VII (2008), 447-454

Real and complex analytic sets. The relevance of Segre varieties

KLAS DIEDERICH AND EMMANUEL MAZZILLI

Abstract. Let X ⊂ Cn be a closed real-analytic subset and put

A := {z ∈ X | ∃ A ⊂ X, germ of a complex-analytic set, z ∈ A, dimz A > 0}
This article deals with the question of the structure of A. In the main result a
natural proof is given for the fact, that A always is closed. As a main tool an
interesting relation between complex analytic subsets of X of positive dimension
and the Segre varieties of X is proved and exploited.
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1. Introduction

If X is a closed real-analytic set in an open subset U ⊂ Cn , n > 1, two questions
may be asked:

1. What is a good notion of a complexification of X , more precisely, what is the
smallest germ of a complex analytic set along X in Cn , containing X?

2. Which complex-analytic sets are contained in X and how can they be found?

This article deals with the second question. More precisely, we consider the follow-
ing situation:

Let X ⊂ U be as above. Put

A :={z ∈ X | ∃ z ∈ A⊂ X, A germ of a complex-analytic set, dimz A>0.} (1.1)

Our principal goal is to show

Theorem 1.1 (Main Result). The set A is closed.

In the algebraic case, the result has been proved in [8]. Also the case of real-
analytic hypersurfaces has been announced in the literature. In [7] it is stated for
pseudoconvex Cω compact hypersurfaces as a theorem. However, the proof in the
article causes difficulties. Furthermore, the main result is mentioned by d’Angelo in
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[4]. As Theorem 2 on page 131 he states for a real-analytic smooth Cω-hypersurface
H the following: if x is a limit point of A then H does not have finite type at x .
(This result also is contained in [3].) This is correct. However, he then wants to
show that through any point x of infinite type on H there is a complex-analytic set
of positive dimension in X (Theorem 4, page 134). His proof, however, seems to
be incomplete, and so the closedness of A has to be proved differently. The proof
given in this article seems to us very natural and direct. It works in great generality.

A major tool for the proof of the Main result is the following theorem, which
was already proved by Diederich/Fornæss in [5]:

Theorem 1.2 (Globalization). Let γ ⊂ X be a germ of a holomorphic curve, 0 ∈
γ . There is a positive radius r > 0 which depends only on X, such that in the ball of
radius r around 0, Br (0) there is a closed complex analytic set A with γ ⊂ A ⊂ X.

Remark 1.3. The essential fact in this result is that the radius r > 0 can be chosen
independently of the choice of 0 and γ .

In [5] it is shown that an immediate consequence of this is:

Corollary 1.4. If X is compact, then A = ∅.

Due to Kohn’s theory of subelliptic multipliers from [7] together with [5, The-
orem 3, page 374] the following result on the ∂-Neumann problem follows, which
nowadays is well known:

Theorem 1.5. Let � � Cn be a pseudoconvex domain with smooth Cω boundary.
Then subelliptic estimates hold for the ∂-Neumann problem on � in all degrees.

Remark 1.6. This result probably is the most important application of the study
of A.

The main idea of the proof here is the use of the fact that Segre varieties de-
pend (anti)holomorphically on their base points. After a lot of technical work this
will enable us to use the following uniform volume estimate of Diederich-Pinchuk
from [6] in order to ensure that certain sequences of analytic subsets of X converge
themselves to analytic subsets of X due to the famous theorem of Bishop (see [1]
and also [2, Theorem 15.5]). It says:

Theorem 1.7 (Bishops’ theorem). Let Aν ⊂ U be a sequence of pure p-dimen-
sional analytic subsets of a complex manifold X converging to some set A ⊂ X and
such that for any compact subset K ⊂ X there is a constant MK ≥ 0 with

vol2p (Aν ∩ K ) ≤ MK

for all ν. Then A is also a pure p-dimensional analytic subset of X.
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The uniform volume estimate is:

Theorem 1.8 (Diederich-Pinchuk). Let U ⊂ Cn, V ⊂ Cm be open sets and
g j (z, w) ∈ O(U × V ) for j = 1, . . . , k with a positive integer k ≤ n. For w ∈ V
put

Aw := {
z ∈ U : g j (z, w) = 0 for j = 1, . . . , k

}
.

Let E := {w ∈ V : dimC Aw > n − k}. Then for any Ũ ⊂⊂ U, Ṽ ⊂⊂ V there
exists a constant c = c(Ũ , Ṽ ) > 0 such that

vol2(n−k)

(
Aw ∩ Ũ

)
< c

for all w ∈ Ṽ \ E. In particular, we can extract from any sequence (Awν ), wν ∈
Ṽ \ E, a subsequence converging in U to an analytic subset A of pure dimension
n − k. (Notice that the sequence (wν) might converge to a point in E.)

The research of this article can be the starting point for the clarification of
several other puzzling questions. We mention two questions which seem to be open
except for very special cases:

Question 1.9.

1. Is A itself a real analytic set?
2. Let 0 ∈ X be a point of infinite d’Angelo type. Is there a complex analytic germ

A of positive dimension with 0 ∈ A ⊂ X?

The structure of the article is the following: In Section 2 we will show the “Principal
Lemma” showing already the essential role which will be played by Segre varieties
in the whole article. Theorem 2 will be easily reproved in Section 3 using it. In
Section 4 we apply, for the first time, the theorem of Diederich-Pinchuk in order
to get an analytic family of complete intersections (see Lemma 4.1 ) to which we
can apply in Section 5 the [6] theorem again in order to get a suitable sequence of
analytic sets in X with bounded volume, such that, finally, the Bishop theorem gives
a good analytic limit set in X passing through 0.
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2. The Principal Lemma

We may assume (see Remark 2.1 below) that X ⊂ U can be written in U as

X = {z ∈ U | �(z) = 0} (2.1)

and let V � U be a relatively compact subset and z0 ∈ V arbitrary.

Remark 2.1. Notice that any real-analytic set can be locally written as the zero set
of one real-analytic function �, independently of its dimension. Of course, here we
do not assume that d� nowhere vanishes.

Then there is a radius r > 0 such that the power series expansion in z and z̄ of
� at the point z0

� (z, z̄) =
∑

α,β∈Nn

1

α! β!∂
α∂

β
� (z0, z̄0)(z − z0)

α(z̄ − z̄0)
β (2.2)

is convergent on the polycylinder 	n
r (z0) of radius r around z0. The complexifica-

tion �̂(z, w)is the function defined for

(z, w) ∈ Û :=
⋃

z0∈V

{	n
r (z0) × 	n

r (z0)} ⊂ C2n (2.3)

by replacing in (2.2) z̄ by the new independent variable w̄. The function �̂(z, w) is
holomorphic in z and antiholomorphic in w. With it we define for any point z0 ∈ V :

Definition 2.2. The Segre variety of X at z0 is the closed complex hypersurface

Sz0 := {z ∈ 	n
r (z0) | �̂(z, z0) = 0} . (2.4)

Remark 2.3. Notice that, even if we assume that �(z) �≡ 0, it might happen that
�̂(·, z0) ≡ 0, since we do not assume that d� nowhere vanishes. Another conse-
quence of this is that Sz0 does not only depend on X , but also on the choice of �,
and there is no canonical choice for �.

The family of Segre varieties given by a fixed � satisfies also in the more gen-
eral situation considered here the same elementary properties as usual. One has:

Lemma 2.4. Let the points z ∈ V and w be chosen such that (z, w) ∈ Û . Then

(1) z ∈ Sw ⇔ w ∈ Sz;
(2) z ∈ Sz ⇔ z ∈ X.

The following is the Principal Lemma for our work and shows the importance of
the Segre varieties:

Lemma 2.5 (Principal Lemma). Let X, �, r be chosen as above. Assume that 0 ∈
X. If 0 ∈ γ ⊂ X is a piece of a non-constant holomorphic disc with holomorphic
parametrization z(t) then

γ ⊂ S0(X) := {z ∈ 	n(0, r) | �̂(z, 0) = 0}. (2.5)
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Proof. We reorder the Taylor series expansion of the function �̂(z(t), z(t)) around
the point (z(t), 0) a little bit and get

�̂ (z(t), z(t))︸ ︷︷ ︸
≡0, since γ⊂X

− �̂ (z(t), 0)︸ ︷︷ ︸
hol. in t

=
∞∑

|α|=1

1

α! ∂α
w̄�̂ (z(t), 0)z(t)

α

︸ ︷︷ ︸
each term has factor t̄

(2.6)

Since the left-hand side is holomorphic in t and all terms on the right hand side
contain t̄ , there cannot be any non-vanishing term. Hence we get �̂ (z(t),0)≡0.

3. An immediate consequence of Lemma 2.5

From Lemma 2.5 we can easily deduce Theorem 1.2, which was first proved in [5]
as a basis for showing that for compact X the set A = ∅. It says that all C-analytic
curves in X lie in C-analytic subsets of “uniform size”

Proof. We are given a non-constant holomorphic curve γ with parameterization
z(t) for |t | < 1 and passing through z. We apply the Principal Lemma 2.5 to all
points z(t) on γ instead of just the origin. We therefore get

γ ⊂ V1 :=
⋂

t

Sz(t).

However, there is an r > 0 such that all Sz are closed analytic hypersurfaces in
polydiscs of uniform size r . So also V1 is a closed analytic set in polydiscs of
uniform size r . However the set V1 might not be contained in X . Instead, we
consider:

A :=
⋂
ζ∈V1

Sζ .

Because of Lemma 2.5 it follows that γ ⊂ A. We claim that also A ⊂ X . Let for
this z ∈ A be arbitrary. Then we have

z ∈ Sζ ∀ζ ∈ V1 (3.1)

according to the definition of V1. Hence z ∈ V1 ∩ A, which implies that z ∈ Sz
because of (3.1). This, however, is the case only for z ∈ X (see Lemma 2.4(2)).
Hence A ⊂ X is, as an intersection of Segre varieties, the C-analytic set of uniform
size in X containing γ which we were looking for.

4. Preparation of the proof of the Main Result Theorem 1.1

In order to show that the set A is closed, we assume that the origin has been chosen
in such a way that 0 ∈ A. We have to show that 0 ∈ A. For this we pick a
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sequence of points (aN ) ⊂ A with aN → 0. For each N we can find a non-constant
holomorphic curve γN ⊂ X passing through aN . And according to Theorem 1.2
a C-analytic set AN ⊂ X of uniform size with γN ⊂ AN . AN can be chosen to
be an intersection of Segre varieties (finitely many obviously suffice because of the
Noether theorem):

AN =
lN⋂
1

SzN
j

⊂ X . (4.1)

The idea of the proof consists in trying to technically prepare the situation such that
the existence of a C-analytic limit set of positive dimension through the limit point
0 can be obtained applying Theorem 1.8 to Bishop’s theorem. For this it is of course
very important that we know already that the sets AN do not shrink down to a point,
but all are closed analytic subsets of polycylinders of uniform radius. The way to
achieve this will be to replace the AN by an analytic family of C-analytic sets to
which Theorem 1.8 can be applied in order to ensure the uniform boundedness of
their volumes.

In a first step we can, after passing to a subsequence, find a sequence of points
bN ∈ AN and a small enough ball B(0, r), such that

dim(AN ∩ B(0, r)) = dimbN (AN ) := pN . (4.2)

Next, we consider the pure dimensional C-analytic subset

BN := {z ∈ AN | dimz AN = pN } .

Since 1 ≤ pN ≤ n, we can pass to another subsequence of (bN ), denoted for
simplicity again by (bN ), such that dimbN BN =: p is independent of N . We know
according to (4.1) that

bN ∈ BN ⊂ AN =
lN⋂
1

SzN
j

⊂ X . (4.3)

We now claim:

Lemma 4.1. There exists an integer l such that for an open set Ũ and a suitable
choice of l points (wN

1 , . . . , wN
l ) ⊂ (zN

1 . . . , zN
lN

) one has ∀ N

BN ⊂
l⋂
1

SwN
j

=: CN (4.4)

with dim CN = dim BN as analytic subsets of Ũ .

Proof. We assume that p = dim BN and let k0 be the maximum of all integers k
such that there is an integer l independent of N , and there are points (wN

1 , . . . , wN
l )

for which

BN ⊂
l⋂

j=1

SwN
j

= CN (4.5)
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with dim CN = n − k0 on some open set Ũ ⊂ Br . Obviously one has

1 ≤ k0 ≤ n − p.

We make the hypothesis, that
k0 � n − p

and want to deduce a contradiction from it by using Theorem 1.8. By dimension
theory for C-analytic sets, we can choose generic linear combinations with complex
coefficients of the holomorphic functions (�̂(z, wN

1 ) . . . , �̂(z, wN
l )) such that we

have

CN ⊂
{

l∑
j=1

λ1
j �̂(z, wN

j ) = · · · =
l∑

j=1

λ
k0
j �̂(z, wN

j ) = 0

}
:= DN (4.6)

and this representation of DN is a complete intersection. We apply the Theorem 1.8
of [6] to the set of functions

G = (g1, . . . , gk0)

with

gi : (z, w1 · · · , wl , λ
1, · · · , λk0) →

l∑
j=1

λi
j �̂(z, w j )

where we consider the w j and all coefficients λi
j as complex parameters. The g j

are holomorphic in these variables (literally speaking they are, of course, anti-
holomorphic in the w′s. This, however, does not harm at all). Since (4.6) is a
complete intersection, and therefore pure-dimensional, Theorem 1.8 anyhow ap-
plies and we obtain for any open subset U � Ũ a constant c(U ), such that

vol2(n−k0)(DN ) ≤ c(U ) .

Hence, in any relatively compact subset of Ũ the number of irreducible components
of CN of dimension n − k0 is uniformly bounded with respect to N . We, therefore,
can find a number l ′ and another family of points (θ N

1 , . . . , θ N
l ′ ) among the points

(zN
1 , . . . , zN

lN
) such that

BN ⊂ CN ∩ {�̂(z, θ N
1 ) = · · · = �̂(z, θ N

l ′ ) = 0} := D′
N

with
dim D′

N � n − k0 ∀ N .

Notice that the number l ′ depends on k0 only and the number of (n − k0)-dimen-
sional irreducible components of CN and, therefore, is independent of N .

This is the desired contradiction to the maximality of k0.
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5. End of the proof of Theorem 1.1

We, now can finish the proof of Theorem 1.1 by again applying the Theorem 1.8
of [6] to the functions

G : Ũ × (Br+ε)
l × Cl(n−p) → Cn−p (5.1)

(z, w1, · · ·,wl , λ
1, · · ·,λn−p) →

(
l∑

j=1

λ1
j �̂(z, w j ), · · ·,

l∑
j=1

λ
n−p
j �̂(z, w j )

)
. (5.2)

We get vol2p(BN ) ≤ c(U ) ∀ U � Ũ . Hence we get from the theorem of Bishop
that there is a C-analytic limit set A of a suitable subsequence of (BN ). It satisfies
dim A = p > 0 and 0 ∈ A ⊂ X . Hence 0 ∈ A, as we wanted to show.
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Mat. 44 (2006), 327–333.

Mathematik
Universität Wuppertal
Gausstr. 20
D-42097 Wuppertal, Germany
klas@uni.wuppertal.de
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